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Chapter 1: Introduction 

For humans, diet is the only source of the essential fatty acids.  They are precursors of long 

chain polyunsaturated fatty acids, eicosapentaenoic (EPA) and docosahexaenoic acid (DHA).  

DHA and EPA consumption is associated with numerous human health benefits including 

reduced coronary vascular disease, blood pressure, inflammatory and autoimmune disorders.  

Fish oil and algae are the two major sources of DHA and EPA.  Dietary supplementation of 

fish oil and algae has some serious problems due to fish oil off-flavor and prompt oxidation 

of polyunsaturated fatty acids.  Feeding dairy cows with fish oil and algae to increase the 

DHA and EPA in milk had limited success because rumen hydrogenation changes the fatty 

acid profile from what was fed.  Also, feeding dairy cows with polyunsaturated fatty acids 

caused significant decreases in feed intake, milk and milk fat production.   

The rapidly growing biodiesel industry generates crude glycerol as a by-product from the 

transesterification of the oils.  These quantities of glycerol have glutted the glycerol market.  

There is an immediate need for innovative methods for crude glycerol utilization into value-

added product to increase biodiesel production efficiency and costs. 

The oleaginous yeast Cryptococcus curvatus, previously known as Apiotrichum curvatum 

ATCC 20509 and Candida curvata, was discovered at Iowa State University in 1978.  This 

yeast was reported as an efficient oil producer and easy to grow with minimal nutritional 

requirements.  An important C.curvatus characteristic is ability to utilize a wide range of 

substrates including glycerol and oils and convert them into lipids that are stored as 

intracellular triacylglycerols.  This ability to encapsulate fed fatty acids may have significant 

uses as a means to protect long chain polyunsaturated fatty acids, which are prone to 

oxidation.  Thus, microbial encapsulation of polyunsaturated fatty acids into Cryptococcus 

curvatus may be a solution for the off-flavor, oxidation, and biohydrogenation problems.  

Moreover, there is a potential that crude glycerol could be converted into oil by 

Cryptococcus curvatus and further transesterified into biodiesel. 

Objectives 
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The goals of this study were to encapsulate polyunsaturated fatty acids into Cryptococcus 

curvatus, understand effect of encapsulation on oxidative stability and rumen 

biohydrogenation of the oil, investigate the potential of using encapsulated fish oil as a 

dietary supplement for dairy cows, and to develop a fermentation method for biodiesel 

industry-derived glycerol utilization.  To achieve these goals, C. curvatus grown in  batch 

and fed-batch fermentation techniques for oil encapsulation  were compared.  The protective 

effect of encapsulation on oxidative stability by forced oxidation test and rumen 

biohydrogenation by in vitro study with rumen fluid system was determined.  A pilot feeding 

trial was conducted with lactating dairy cows. Fed-batch fermentation procedures were 

developed for fish oil encapsulation and for de novo oil synthesis from biodiesel industry-

derived glycerol. 

Dissertation organization 

This dissertation is divided into eight chapters.  Chapter 2 contains literature review of the 

concerning topics of oleaginous microorganisms, health implications of omega-3 fatty acids, 

rumen biohydrogenation and biodiesel industry-derived glycerol glut problem. The following 

four chapters (Chapters 3-6) are largely independent, with each discussing the results from 

different experiments.  In particular, Chapter 3 discusses the oxidative stability of 

encapsulated oils, Chapter 4 focuses on the encapsulation effect on the rumen 

biohydrogenation, and Chapter 5 reports the results from feeding trial.  Chapter 6 suggests 

the scale up procedure for fish oil encapsulation.  Chapter 7 includes the results obtained 

using the biodiesel industry derived glycerol for single cell oil synthesis by Cryptococcus 

curvatus and Chapter 8 presents general conclusions. 
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Chapter 2: Literature Review 

Oleaginous Microorganisms 

Oleaginous microorganisms have been studied since the mid Nineteen Century (Ratledge and 

Wynn, 1997).  They have been defined as microorganisms that are capable of accumulating 

at least 20% of their biomass as lipid.  Oleaginicity is a relatively rare characteristic; less than 

100 species of yeast, mold and algae are oleaginous (Ratledge and Evans, 1989; Ratledge, 

1988, 1997, 2006).  Each oleaginous microorganism has a different maximal amount of lipid 

that it is able to accumulate (Table 1a-c).  Some organisms can only accumulate 25% on dry 

weight basis, whereas some have the ability to produce 50% lipids and a few are capable of 

accumulating 70-80% lipids (Ratledge, 1991).  Oleaginous microorganisms produce and 

accumulate lipids under special conditions: exhaustion of an essential ingredient, and usually 

a nitrogen source, although mineral depletion has been shown to cause lipid accumulation in 

some organisms (Ratledge, 1984; 1988).  During the tropophase or growth phase, all 

essential nutrients are available for the growth and little lipid accumulates. When nitrogen 

becomes limiting, but carbon sources are still abundant, the microorganism experiences an 

unbalanced conditions known as idiophase.  During idiophase, proliferation stops because of 

lack of nitrogen (critical for nucleic acids and protein synthesis), but cells continue to 

consume available carbon, and synthesize and accumulate lipids as a reserve storage material 

(Ratledge, 2006).  Cells can use this lipid reserve for energy and as a carbon source when 

environmental conditions are not favorable and other carbon sources are not available.  

Oleaginous yeast, mold, and algae store lipid as triacylglycerols (Hammond et al, 1981; 

Bigogno et al., 2002; Dyal et al., 2005).   

Some bacteria are known to store reserve materials such as poly-β-hydroxybutyrate , and 

poly-β-hydroxyalkanoates (Chien et al., 2007; Catalán et al., 2007; Jiang et al., 2008). Non-

oleaginous organisms are not able to store lipids under any conditions (Botham and Ratledge, 

1979; Ratledge and Wynn, 2002).  Under nitrogen limiting conditions, non-oleaginous 

organisms cease cell proliferation and division and may store polysaccharides (Sutherland, 

1999).  Oleaginous organisms have an enzyme, adenosine triphosphate:citrate lyase, and a 
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way to produce acetyl-coenzyme A (CoA), which are necessary for fatty acid biosynthesis 

that non oleaginous organisms do not have (Ratledge, 2006).   

Biochemistry of oil synthesis in oleaginous organisms 

C. Ratledge  intensively studied the biochemistry of oleaginous organisms for 30 years.  In 

1979, Botham and Ratledge compared the non-oleaginous yeast Candida utilis and 

oleaginous yeast Candida 107.  They found that the yeasts similarly assimilated glucose, 

before and after nitrogen limitation, and  had equal acetyl-CoA carboxylase activities.  But in 

the oleaginous Candida 107, the amount of adenosine monophosphate (AMP) decreased 

under nitrogen-limiting conditions to 5% of its value under carbon-limited conditions.  In 

non-oleaginous yeast, AMP concentration variation was small in the presence of nitrogen 

limitation.  In 1979, Botham and Ratledge proposed two reasons for oleoginicity: 

1) the ability to produce a continuous supply of acetyl-CoA to the cell cytosol; 

2) the ability to produce sufficient supply of nicotinamide adenine dinucleotidephosphate 

(NADPH).  

In oleaginous organisms, the cytosolic enzyme adenosine triphosphate (ATP):citrate lyase  is 

responsible for acetyl-CoA formation: 

Citric Acid + CoA + ATP���� acetyl-CoA + oxaloacetate + ADP + Pi    (1) 

Citric acid synthesis takes place in the mitochondriaof the cell and acetyl-CoA production 

(Reaction (1)) occurs in the cytosol, where fatty acid synthesis takes place.  Citrate is 

transported from mitochondrion to the cytosol by citrate/malate translocase (Evans et al., 

1983a, b).  The difference between non-oleaginous and oleaginous microorganism is that,  in 

the cytosol of the oleaginous microorganisms, the activity of isocitrate dehydrogenase is 

dependent on the AMP concentration, but, in the nonoleaginous microorganisms,  AMP 

concentration has no effect on the isocitrate dehydrogenase activity.  In oleaginous 

microorganisms, the amount of AMP is controlled by the activity of AMP deaminase: 

AMP ���� inosine 5’-monophosphate + NH3   (2) 
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Reaction (2) shows that AMP deaminase is an enzyme that is regulated by the nitrogen 

concentration.  Thus, nitrogen limitation initiates series of reactions (Ratledge, 2004) that 

start with increased activity of AMP deaminase (Evans and Ratledge, 1985; Wynn et al., 

2001).  Next,  a decreasing amount of AMP occurs in the cytosol and in mitochondria.  A 

low content of AMP in the mitochondria stops isocitrate dehydrogenase, because in 

oleaginous organisms isocitrate dehydrogenase activity depends on the AMP concentration 

(Evans et al., 1983ab).  The deactivation of the isocitrate dehydrogenase slows down or stops 

the conversion of isocitrate to α-ketoglutarate.  Isocitrate in the mithochondrion rapidly 

converts into citrate via aconitase, and low concentrations of isocitrate are found in the 

mitochondria (Evans et al., 1983a).  As a result of the citrate concentration increases in 

mitochondria, citrate enters the cytosol in exchange for malate via citrate/malate translocase.  

In the cytosol, citrate is cleaved by adenosine triphosphate:citrate lyase to acetyl-CoA and 

oxaloacetate (Reaction (1)) and acetyl-CoA participates in fatty acid biosynthesis. 

Oxaloacetate is transformed to malate by malate dehydrogenase, and the malate is used in the 

citrate transport system (Figure 1).   

The reductant NADPH is essential for fatty acid synthesis.  The malic enzyme is considered a 

major NADPH generator: 

Malate + NADP
+
���� piruvate + CO2 + NADPH    (3) 

Malic enzyme activity is found in a majority of oleaginous organisms, but the possibility of 

an alternative NADPH-producing enzyme has also been suggested (Ratledge, 2004).   

Thus, in oleaginous organisms lipid biosynthesis begins with adenosine triphosphate:citrate 

lyase  that provides a  high concentration of acetyl-CoA, and then fatty acid synthesis 

proceeds as in non-oleaginous yeasts via fatty acid synthetase (Figure 2).  Acyl carrier 

protein (ACP) is a domain of the multifunctional fungal fatty acid synthase system.  ACP 

shuttles between enzymatic centers of the fatty acid synthesis cycle to deliver intermediate 

reaction products that are covalently attached to its prosthetic group (Leinbundgut et al., 

2007).  After seven complete cycles, palmitoyl-ACP may be elongated via palmitate elongase 

or modified by additional enzymatic changes (Ratledge, 1988).  
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Synthesized long-chain acyl CoA esters are esterified to glycerol to form various lipids.  

Oleaginous yeast accumulate 90% of total lipids as triacylglycerols (Hammond et al, 1981; 

Ratledge, 1988). 

The oleaginous yeast, Cryptococcus curvatus previously known as Apiotrichum curvatum 

ATCC 20509 and Candida curvata, was discovered at Iowa State University (Moon and 

Hammond, 1978).  Four yeast strains were isolated from dairy drain that had ability to 

ferment lactose from cheese whey permeate and accumulate significant amount of lipids 

(Hammond et al, 1981).  An important C. curvatus characteristic is the ability to utilize a 

wide range of substrates.  C. curvatus growth was evaluated on various monosaccharides, 

disaccharides, refined glycerol, ethanol, fatty acids, various oils, and agricultural wastes 

(Glatz et al., 1984; Glatz et al., 1985; Lee et al., 1992; Meesters et al., 1996).  C. curvatus 

grows well while using all the available whey nitrogen and carbon.  Then, the yeast begins to 

convert the carbon into intracellular oil and typically ends with 50-73% oil on a dry weight 

basis.  The oil produced on lactose has a fatty acid composition similar to that of palm oil.  

Carbon source and its concentration have been shown to affect lipid accumulation.  

Carbohydrate source does not have significant influence on fatty acid composition of the 

yeast oil (Ratledge and Evans, 1989), but amount of total lipid accumulated by yeast cell 

depends on substrate (Evans and Ratledge, 1984). 

Omega-3 (ω-3) fatty acids 

Eicosapentaenoic acid (EPA, 20:5; ∆5,8,11,14,17; 20:5 n-3 ), docosahexaenoic acid (DHA, 

22:6 ; ∆4, 7,10,13,16,19) and α-linolenic acid (ALA, 18:3; ∆9,12,15) are members of the 

omega-3 polyunsaturated fatty acids (PUFA) family.  They are defined by the double bond 

on the third carbon atom from the methyl end of the molecule.  Linoleic acid and ALA are 

considered essential fatty acids because humans lack the ability to synthesize them and must 

obtain them from diet.  Humans can synthesize DHA and EPA from ALA by a series 

desaturations and elongations (Figure 3); however, the conversion seems to be very poor.  

The ALA to DHA conversion efficiency is in the range of 0.1 to 8% (Pawlosky et al., 2001; 

Burdge and Wootton, 2002; Francois et al., 2003; Hussein et al., 2005).  The conversion of 

ALA to DHA is higher in women and increased during pregnancy (Burdge and Wootton, 
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2002).  Fish oil, seafood, fungi, and marine algae are the major sources of DHA and EPA 

(Shahidi and Senanayake, 2006).  Canola, soybean, linseed, and walnut oils are the major 

dietary sources of ALA.  Linseed oil contains 45-60% ALA (Shahidi and Senanayake, 2006) 

whereas the other sources are much poorer.    

Omega-3 fatty acids have a wide range of health benefits for humans and animals because of 

their essential role in several physiological processes; they are part of cell membranes and 

directly affect their fluidity.  They participate in cell signaling, gene expression, and in 

eicosanoid metabolism (Garg et al., 2006).  Eicosanoids include prostanoids (prostaglandins, 

prostacyclins, tromboxanes), leukotrienes, and hydroxy fatty acids.  They are hormone-like 

compounds that have diverse effects on cardiovascular, reproductive, respiratory, renal, 

endocrine, skin, nervous, and immune systems.  Prostanoids can be formed in the most 

tissue, but leukotrienes are generated in blood cells.  Prostaglandin E2 and prostacyclin I2  are 

produced  in the endothelial cells of blood vessels from arachidonic acid.  These compounds 

have a wide range of functions. Prostaglandins participate in aggregation or disaggregation of 

platelets, the dilation and constriction of smooth muscle cells, controlling blood pressure, and 

regulating inflammatory mediation.  Prostacyclin I2  is a vasodilator and prevents blood clot 

formation. In contrast, thromboxane A2 that is formed in platelets from arachidonic acid 

promotes the aggregation of blood platelets, the clotting of blood within blood vessels and 

inflammatory reactions.  Leukotrienes participate in inflammatory response, have a strong 

effect in bronchoconstriction, and increase vascular permeability. 

In 1972, Bang and Dyeberg correlated high intake of omega-3 fatty acids with a low 

incidence of coronary heart disease in Greenland’s west-coast Eskimo population.  This work 

inspired a number of epidemiological studies of the health benefits of oily fish consumption 

(Newman et al., 1993; Hu et al., 2003; He et al., 2004).  These studies showed that 

consumption of DHA and EPA has anti-arrhythmic effects, reduces cardiovascular mortality, 

decreases ventricular fibrillation, and increases survival after myocardial infarction 

(Marchioli, 2001; Calder, 2004; Balk et al., 2006).  Friedberg et al. (1998) conducted a 

metaanalysis to test the effect of fish intake on hypertriglyceridemia in diabetes and 

concluded that fish oil may be useful in treating dislipidemia in diabetes. 
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DHA is essential for proper infant brain development and normal adult brain function (Innis, 

2005, 2008).  Significant amounts of DHA are found in mammalian central nervous systems, 

especially in brain grey matter and in the visual elements of the retina (Innis, 2008).  

Martinez (1992) studied the brain tissues of infants whose deaths were not neurologically 

related and found that the amount of DHA in brain increased during development in the 

prenatal and postnatal periods up to at least 2 years of age.  Innis and Friesen (2008) reported 

that infant girls whose mothers had a DHA-deficiency during pregnancy were prone to have 

below average visual acuity.  The amount of DHA in brain and retina can be altered by 

dietary supplementation with DHA (Innis, 2005).  Giusto et al. (2002) studied the aging of 

brains of rats and reported a significant decrease of PUFA arachidonic (20:4 n-6), adrenic 

(22:4 n-6), and DHA and an increase in the monounsaturated fatty acids oleic and eicosenoic.  

These changes were correlated with aging, especially in phosphatidylethanolamine and 

serine. 

Recent studies suggested that nutritional supplementation of omega-3 fatty acids from fish oil 

may have therapeutic benefits for patients with Alzheimer's disease (Calon et al., 2004; 

Boudrault et al., 2008).  Mamalakis et al. (2006) found an inverse relationship between 

adipose DHA and depression in adults, a result that agreed with previous epidemiological 

data.  This finding suggested that a low dietary DHA intake is associated with an increased 

risk for depression in adults.  Peet and Horrobin (2002) reported that administration of 1 g/d 

EPA ethyl ester was effective in treating depression.  Several epidemiological, animal, and 

clinical studies support the use of low-fat diets containing omega-3 fatty acid supplements 

for preventing the development and progression of prostate and breast cancers (Connolly et 

al., 1999; Aronson et al., 2001; de Deckere, 1999).  Dietary omega-3 fatty acids also are 

associated with decreasing amounts of plasma interleukins and tumor necrosis factor that 

may act as free radical scavengers (Fisher et al., 1986; Seljeflot et al., 1999).  Omega-3 fatty 

acids have prominent anti-inflammatory effects that may be mediated by a reduction of the 

arachidonic acid metabolites leukotriene B4, and thromboxane A2.  Omega-3 fatty acids 

consumption has been suggested for prevention of the early stages of inflammatory bowel 

disease (Belluzzi et al., 2000) and rheumatoid arthritis (Volker and Garg, 1996).  There is 

some evidence that linseed (flaxseed) consumption has a positive effect on renal function for 
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patients with lupus nephritis (Clark et al, 2001).  EPA has positive therapeutic effect for 

psoriasis vulgaris (Danno and Sugie, 1998).  

Official dietary recommendations for omega-3 (ω-3) fatty acids  

The first official nutritional recommendation for regular fish consumption, twice a week, 

with one meal being fatty fish, was made in 1994 in the United Kingdom (Ackman, 2006).  

In 2002 and 2003, the American Heart Association released a committee report that 

recommended “patients without documented chronic heart disease should eat  a variety of 

fish, flaxseed, canola, and soybean oils and walnuts at least once a week; patients with 

documented chronic heart disease should consume 1 g of EPA+DHA per day, preferably 

from oily fish; EPA+DHA supplements could be considered with the physician.  Patients, 

that have high values of low density lipoprotein fraction in blood, should consume 2-4 g of 

DHA+EPA per day provided as capsules under a physician care” (Ackman, 2006).  

In 2004 the U.S. Food & Drug Administration released a qualified health claim: 

“Consumption of omega-3 fatty acids may reduce the risk of coronary heart disease.”  FDA 

evaluated the data and determined that, although there is scientific evidence supporting the 

claim, the evidence is not conclusive” (US Food and Drug Administration 2004).  In 2005 

the United Kingdom,  health claim was approved by the Joint Health Claims Initiative that 

said: “Eating 3 g weekly, or 0.45 g daily, of long-chain n-3 PUFA, as part of a healthy 

lifestyle, helps maintain heart health” (Joint Health Claims Initiative, 2005). 

Encapsulation 

Despite numerous health benefits of fish and linseed oils, their food application, production, 

and transportation entails significant problems because of the oxidative instability of PUFA.  

Frankel (2005) theorized that DHA oxidation is 50 times faster than that of oleic acid. 

Encapsulation of oils rich in omega-3 fatty acids was suggested as a method for protection 

against oxidation (Garg et al., 2006).  Several technologies for the encapsulation of fish oil 

have been suggested (Klinkersorn et al., 2006).  The encapsulation process begins with the 

formation of fish oil emulsions with a single or a mixture of emulsifiers such as proteins, 
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polysaccharides, or lecithin.  The emulsions are spray-dried to form microcapsules.  

Encapsulation by double emulsification followed by enzymic gelation with microbial 

transglutaminase cross-linked proteins has also been suggested for protein-based 

microcapsulation of fish oils (Cho et al., 2003).  Freezing fish oil emulsions results in better 

stability of the oil and its flavor (Klinkersorn et al., 2005).  These technologies have several 

disadvantages: 1) the oil portion of the microcapsules is low, from 1-30% (Garg et al., 2006); 

so, only a small amount of omega-3 fatty acids can be incorporated, 2) oil that leaks out 

during the spray-drying process oxidizes and affects the flavor; and 3) microencapsulation 

can affect bioavailability and digestability of fish oil (Beysseriat et al., 2006).  

PUFA supplementation and protection from hydrogenation 

There have been numerous attempts to feed ruminant animals with fish and linseed oils to 

alter fatty acid composition of milk fat (Baer et al., 2001; Moussavi et al., 2007; Ueda et al., 

2003; Loor et al., 2005).  However, small PUFA increases in milk have been reported with 

feed refusal and a reduction in milk fat and milk production (Baer et al., 2001; Loor et al., 

2005; Murphy et al., 2008).  Fish and linseed oils are rapidly oxidized and develop 

unpleasant off-flavors because of PUFA oxidation.  These off-flavors can discourage feed 

intake.  Depression of milk fat and milk production may be caused by toxicity of DHA and 

EPA for rumen microorganisms, which also would depress biohydrogenation and fiber 

digestion (Palmquist and Jenkins, 1980; Wąsowska et al., 2006).  

A variety of methods have been suggested to protect PUFA in the rumen, including 

encapsulation of the PUFA in protein by formaldehyde treatment (Ashes et al., 1979), 

formation of calcium soaps of PUFA (Enjalbert et al., 1997; Moussavi et al., 2007), 

protection of PUFA inside of algae (Franklin et al., 1999), tannin treatment of flaxseeds 

(Kronberg et al., 2007), and protein encapsulation (Gulati et al., 2002). 

Gulati et al. (1999) reported that when fish oil protected by formaldehyde treatment was used 

as a dietary supplement for lactating goats, EPA and DHA transfer efficiency into milk  fat 

was 7-8% from consumed amount of omega-3 fatty acids; however, they also reported 
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prominent negative effects such as depressed food intake and milk fat production.  In 

addition, formaldehyde treatment of animal feeds is not legal in the United States. 

Franklin et al. (1999) used the marine algae, Schizochytrium sp, which were protected from 

rumen biohydrogenation by coating the algae with xylose.  While there were higher amounts 

of CLA, DHA and vaccenic acid in the milk of fed animals, these increases were 

accompanied by significant decreases in feed intake and milk fat output.  

Gulati et al. (2002) successfully fed PUFA-rich oils encapsulated in a matrix of rumen 

protein to lactating cows. They achieved transfer efficiencies of EPA and DHA as high as 24 

and 14%, respectively, from the cows’ diet to milk (0.86% and 1.41% in milk fat, 

respectively) without any negative effects on feed intake or milk fat production. 

Kronberg et al. (2007) reported that tannin treatments to flaxseeds protected ALA from 

rumen hydrogenation in vitro; however, there were no increases in ALA or EPA in plasma 

neutral lipids when steers were feed tannin-treated flaxseeds. 

The feeding of calcium salts of PUFA has been suggested as a way to bypass rumen 

hydrogenation.  Studies have shown that, despite protective effect from hydrogenation 

conferred by calcium salts, milk fat and fat yield depression were still serious problems 

(Giesy et al., 2002; Bernal-Santos et al., 2003).  Enjalbert et al. (1997) reported that calcium 

salts of rapeseed oil were protected from rumen hydrogenation and did not affect milk 

production or fat and protein yields.  However, Carriquiry et al. (2008) reported evidence of 

hydrogenation of calcium-protected PUFA and suggested that calcium soaps of fatty acids 

can be partially metabolized in the rumen. Similarly, Castaneda-Gutierrez et al. (2007) 

concluded that calcium salts of fish oil do not protect DHA and EPA against hydrogenation, 

but calcium salts of fish oil prevented negative effects of fish oil on food intake and milk fat 

yield observed with unprotected fish oil. 

Yeast supplementation 

A number of viable and dead yeast products are used as dietary supplements for ruminant 

animals to enhance dry matter intake and overall animal performance (Cole et al., 1992; 
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Robinson, 1997;  Stella et al., 2007).  Possibly, viable yeast in supplement are able to grow in 

the rumen and produce nutrients that stimulate the growth of rumen bacteria (Newbold et al., 

1996; Robinson, 1997).  Oxygen is toxic for many cellulolytic bacteria found in the rumen.  

Possibly, yeast stimulates the growth of rumen bacteria by consuming dissolved oxygen 

especially at the interface of the rumen bacteria and fiber.  Yeast cultures also provide a 

mixture of micronutrients that have beneficial effect on rumen bacteria, which improves fiber 

utilization and prevents fiber accumulation in the rumen (Miranda et al., 1996; Chaucheyras-

Durand et al., 2008).  Viable and dead strains of Saccharomyces cerevisiae are the most 

intensively studied and the most popular yeast supplement added to the diet of ruminant 

animals (Robinson, 1997.  Dawson et al. (1990) compared viable and inactive S. cerevisiae 

cells supplements and concluded that dead cells did not alter the concentrations of cellulolytic 

bacteria in rumen cultures.  S. cerevisiae dietary supplementation significantly increased the 

dry matter intake and milk and milk fat production of ruminant animals (Giger-Reverdin et 

al., 1996; Stella et al, 2007; Chaucheyras-Durand et al., 2008).  A combination of viable S. 

cerevisiae and Armillariaheimii (white rot fungi) was reported to increase forage digestibility 

(Mpofu and Ndlovu, 1994).  Cultures of live brewer’s yeasts were successfully used as 

supplement to ruminants (Robinson, 1997).  As there are no known negative effects of 

feeding dead yeast to ruminants, dietary yeast supplementation has a long history and 

positive image in dairy and cattle industry.  However, C.curvatus has not been fed to 

ruminants before.   Poultry feeding has shown that the alive C.curvatus organism have no 

negative effects on poultry (Hussein et al., 1996).   

Glycerol, a biodiesel industry by product 

The US biodiesel industry will produce close to 0.8 billion kg per year by the end of 2009.  

This amount will be added to 250 million kg of glycerol derived each year from other 

industries (Kraus, 2008).  Biodiesel is produced when triacylglycerols from animal or 

vegetable oil are converted into methyl esters of fatty acids (biodiesel) and glycerol.  

Production of 100 kg of biodiesel results in approximately 9 kg of impure low quality 

glycerol (Figure 4).  



www.manaraa.com

 13 

Because of the recent increase in production of biodiesel with a concomitant increase in the 

amounts of glycerol on the market, the price of glycerol has dropped dramatically.  The 

glycerol consumption distribution between industries is presented in Table 2 (Johnson and 

Taconi, 2007). 

Crude biodiesel-based glycerol contains a variety of impurities including water, free fatty 

acids and methanol, which make it unsuitable for use in food or cosmetics without substantial 

and expensive refining, chemical treatment, and fractional vacuum distillation.  There is need 

for the processes that converts large quantities of crude glycerol into valuable products that 

have large markets.  Glycerol can be converted into numerous compounds (Ashby et al., 

2005; Dharmadi et al., 2006; Johnson and Taconi, 2007).  Glycerol can be converted to 

hydroxyl acetone by dehydration reaction, and then by a hydrogenation reaction to propylene 

glycol (Suppes et al., 2005).  Propylene glycol, besides its high value (Table 3), has potential 

to displace toxic ethylene glycol in antifreeze application (Shelley, 2007).  Glycerol can be 

oxidized to produce glyceric acid or tartronic acid, but the process requires platinum and gold 

as a catalyst to achieve high selectivity and conversion (Garcia et al., 1995; Demirel-Gulen et 

al., 2005).  Glycerol can be used as a substrate in industrial fermentation processes.  The 

most studied technique is biotechnological conversion of glycerol into 1,3-propanediol (Biebl 

et al., 1999; Deckwer, 1995; Himmi et al., 1999), a high value product with applications in 

the textile and chemical industries (Zeng and Biebl, 2002).  Prokaryotic cells from 

Enterobacteriaceae family, such as Citrobacter freundii and Klebsiella pneumonia, are able 

to metabolize glycerol and synthesize 1,3-propanediol (Zeng et al., 1997).  By using a fed-

batch fermentations, efficiency of 1,3-propanediol production was reported as high as 70.4 

g/L for product-tolerant mutants of  Clostridium butyricum and 70–78 g/L for Klebsiella 

pneumonia (Zeng and Biebl, 2002).  Papanikolaou et al. (2008) used batch fermentation and 

reported  47.1 g/L of 1,3-propanediol yield that have been produced by Clostridium 

butyricum F2b from crude glycerol as a substrate.  Glycerol also can be used in fermentations 

for ethanol and hydrogen and α-amylase production.  Ito et al. (2005) reported the maximal 

hydrogen production rate of 63 mmol/L*h from diluted crude glycerol and ethanol yield of 

0.85 mol/mol of glycerol by using Enterobacter aerogenes HU-101.  Glycerol was used as a 

only substrate for Yarrowia lipolytica for production of biomass and α-amylase (Kim et al., 
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2000).  Microbial dihydroxyacetone synthesis is considered more economical than the 

chemical process (Hekmat et al., 2003).  Biotransformation efficiency of glycerol to 

dihydroxyacetone was improved by overexpression of glycerol dehydrogenase (ORFs sldAB)  

in Gluconobacter oxydans DSM 2343 such that 30 g/L of dihydroxyacetone was produced by 

the overexpression strains compared with 18–25 g/L in control strains when 50 g/L glycerol 

was supplied (Gatgens et al., 2007).  Yarrowia lipolytica was suggested as potential producer 

of citric acid from glycerol (Aiba and Matsuoka, 1979; Papanikolaou P et al., 2002).  Imandi 

et al. (2007) optimized production of citric acid by Yarrowia lipolytica  by using crude 

glycerol from biodiesel production; they achieved 77.4 g/L of the citric acid production when 

0.27g/L yeast extract, 54.4 g/L glycerol, and 13.7% salt solution were used (Imandi et al., 

2007).  When Yarrowia lipolytica was cultivated with crude glycerol as a substrate in 

continuous fermentation process for single cell lipid production the maximal lipid production 

was 1.2 g/L*h with cell lipid content 43% w/w dry weight (Papanikolaou  and  Aggelis, 

2002).  Meesters et al. (1996) used refined glycerol when they cultivated Cryptococcus 

curvatus.  They reported significant glycerol concentration effect on Cryptococcus curvatus 

growth, achieved biomass production 118 g/L with lipid cell content 25% and suggested 

Cryptococcus curvatus as a potential oleaginous microorganism for crude glycerol 

conversion into single cell oil.   

Despite relatively high value of products from industrial fermentation, they do not have 

sufficient markets to utilize entire crude glycerol surplus from the biodiesel industry (Table 

3). However, oil synthesized de novo in microbial cells from glycerol could be further 

converted to biodiesel.  Thus, single cell oil production from crude glycerol could be a 

solution for glycerol glut problems. 
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Table 1a. Oleaginous yeast. 
 

Oleaginous yeast Substrate 
Fat content 

(% dry mass) 
Dry mass 

(g/L) 
Fermentation Reference 

Candida guilliermondi glucose 25.0 - batch Ratledge, Boulton,1985 

Candida paralipolytica glucose 32.0 - batch Ratledge, 1982 

Candida sp107 glucose 42.9 9.8 batch Moreton, 1985 

Candida tropicalis n-alkanes 32.0 20.3 batch Andreevskaya et al., 1984 

Cryptococcus albidus ethanol 71.1 14 batch Krylova et al, 1985 

Cryptococcus curvatus crude glycerol 25.0 118.0 fed-batch Meesters et al., 1996 

Cryptococcus curvatus banana juce 73.7 10.6 batch Vega et al, 1988 

Cryptococcus terricolus glucose 65.0 21.0 batch Ratledge, 1982 

Endomyces vernalys IFO O114 glucose 30.0 10.4 batch Ratledge, 1982 

Lipomyces lipoferus glucose 48.0 15.0 batch Ratledge, 1982 

Lipomyces starkeyi lactose 31.0 10 batch Ratledge, 1982 

Lipomyces starkeyi ethanol, glucose 54.2 153.0 fed-batch Yamauchi et al, 1983 

Lipomyces starkeyi glucose 63.0 - batch Ratledge, 1982 

Lipomyces tetrasporus glucose 64.0 - batch Ratledge, 1982 

Rhodosporidium toruloides glucose 66.0 19.1 batch Ratledge, 1982 

Rhodosporidium toruloides glucose 30.1 12.3 batch Moreton, 1987 

Rhodosporidium toruloides glucose 48.0 151.5 fed-batch Li et al., 2007 

Rhodosporidium toruloides glucose 51.0 10.9 batch Evans, Ratledge, 1984 

Rodotorula glutinis glucose 40.0 185.0 fed-batch Pan et al, 1986 

Rodotorula glutinis sucrose 53.0 21.0 batch Chahal et al., 1979 
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Table 1a. Oleaginous yeast (continued). 
 

Oleaginous yeast Substrate 
Fat content 

(% dry mass) 
Dry mass 

(g/L) 
Fermentation Reference 

Rodotorula glutinis glucose 71.0 - - Ratledge, 1982 

Rodotorula gracilis molasses 40.0 44 - Ratledge, 1982 

Rodotorula gracilis glucose 60.7 19.1 batch Sattur, Karanth, 1989 

Rodotorula gracilis glucose 49.8 34 continuous Choi et al, 1982 

Rodotorula gracilis glucose 66.0 17 batch Ratledge, 1982 

Rodotorula gracilis ethanol 62.0 15 batch Ratledge, 1982 

Rodotorula gracilis alkanes 32.0 - batch Ratledge, 1982 

Rodotorula graminis glucose 29.0 9.6 batch Evans, Ratledge, 1984 

Rodotorula graminis glucose 41.0 15.8 batch Ratledge, 1982 

Rodotorula mucilaginosa glucose, sucrose 28.0 - - Ratledge, 1982 

Schwanniomyces occidentalis glucose 23.0 3.3 batch Guerzoni et al., 1985 

Trichosporon cutaneum glucose 38.0 10.9 batch Evans, Ratledge, 1984 

Trichosporon cutaneum lactose 45.0 24 batch Ratledge, 1982 

Trichosporon pullulans  glucose 30.0 10.4 batch Ratledge, 1982 

Trigonopsis variabilis glucose 40 - - Ratledge, 1982 

Waltomyces lipofer peat 39.5 7.7 batch Zalashko et al., 1976 

Waltomyces lipofer glucose 63.5 21.7 batch Ratledge, 1982 

Willopsis saturnus,  glucose 30.0 10.4 batch Evans, Ratledge, 1984 

Yarrowia lipolytica crude glycerol 43.0 8.1 continuous Papanikolaou, Aggelis, 2002 
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Table 1b. Oleaginous algae. 
 

Oleaginous yeast  
Fat content 

(% dry mass) 
  Reference 

Shizochytrium limacinum  50.6   Chi et al., 2007 

Botryococcus braunii  53   Ratledge, 1982 

Chlorella pyrogenosa  72   Ratledge, 1982 

Chlorella vulgaris  30   Ratledge, 1982 

Chlorosarcinopsis negevensis  32   Ratledge, 1982 

Cilindrotheca closterium  27   Ratledge, 1982 

Cylindrotheca fusiformis  28   Ratledge, 1982 

Desert isolate no. 103  34   Ratledge, 1982 

Dunaliella primolecta  54   Ratledge, 1982 

Dunaliella salina  47   Ratledge, 1982 

Dunaliella tertiolecta   42.4   Hong et al., 2008 

Monodus subterraneus  36   Ratledge, 1982 

Nitzschia sp.  47   Ratledge, 1982 

Pennate marine diatom  35   Ratledge, 1982 

Phaeodactylum tricornutum  31   Ratledge, 1982 

Radiosphaera negevensis  43   Ratledge, 1982 

Scenedesmus sp. 3  25   Ratledge, 1982 

Stichococcus bacillaris  32   Ratledge, 1982 

Thalassiosira pseudonana  37   Hong et al., 2008 

Nannochloris atomus   38.8   Hong et al., 2008 

Neochloris oleoabundans  42   Hong et al., 2008 
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Table 1c. Oleaginous fungi. 
 

Oleaginous yeast Substrate 
Fat content 

(% dry mass) 
Dry mass 

(g/L) 
 Reference 

Aspergillus nidulans sucrose 50.0 9.3  Azeem et al, 1999 

Absidia spinosa glucose 28.0 5.5  Ratledge, 1982 

Aspergillus fischeri sucrose 53.0 19.8  Ratledge, 1982 

Aspergillus flavus glucose 28.0 5.3  Ratledge, 1982 

Aspergillus minutus glucose 35.0 4.4  Ratledge, 1982 

Aspergillus ochraceus sucrose 48.0 13  Ratledge, 1982 

Aspergillus sydowii sucrose 42.1 -  Azeem et al, 1999 

Aspergillus terreus starch 24.0 4.4  Ratledge, 1982 

Aspergillus terreus sucrose 57.0 13  Ratledge, 1982 

Aspergillus ustus lactose 28.0 8.7  Ratledge, 1982 

Blastomyces dermatitidis glucose 41.0 -  Ratledge, 1982 

Chaetomium globosum lactose 54.0 -  Ratledge, 1982 

Cladosporium herbarium glucose 29.0 11  Ratledge, 1982 

Claviceps purpurea glucose 31.0 -  Ratledge, 1982 

Conidiobolus nanodes glucose 25.7 9.8  Kendrick, Ratledge, 1992 

Cunninghamella elegans glucose 56.0 -  Ratledge, 1982 

Entomorphthora coronata glucose 45.0 -  Ratledge, 1982 

Entomorphthora exitales glucose 24.6 11.6  Kendrick, Ratledge, 1992 

Entomorphthora obscura glucose 34.0 -  Ratledge, 1982 

Entomorphthora thaxteriana glucose 32.0 -  Ratledge, 1982 
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Table 1c. Oleaginous fungi (continued) 
 

Oleaginous yeast Substrate 
Fat content 

(% dry mass) 
Dry mass 

(g/L) 
 Reference 

Entomorphthora virulenta glucose 26.0 -  Ratledge, 1982 

Epidermophyton floccosum glucose 28.0 -  Ratledge, 1982 

Fusarium bulbigenum glucose 50.0 15  Ratledge, 1982 

Fusarium equisetti sucrose 36.2 -  Azeem et al, 1999 

Fusarium graminearum glucose 31.0 -  Ratledge, 1982 

Fusarium lini glucose 35.0 5.6  Ratledge, 1982 

Fusarium lycopersicum glucose 40.0 9.2  Ratledge, 1982 

Fusarium oxysporum sucrose 51.0 -  Azeem et al, 1999 

Gibberella fujikoroi glucose 48.0 7.8  Ratledge, 1982 

Histoplasma capsulatum glucose 37.0 -  Ratledge, 1982 

Histoplasma duboisii glucose 42.0 -  Ratledge, 1982 

Malbranchea pulchella var sulfurea glucose 25.0 -  Ratledge, 1982 

Microsporum canis glucose 29.0 -  Ratledge, 1982 

Microsporum gypseum glucose 29.0 -  Ratledge, 1982 

Mortierella alpina malt agar 32.0 -  Totani, Oba, 1987 

Mortierella alpina glucose, olive oil 44.0 22.5  Shinmen et al., 1989 

Mortierella ramannia dextrose 54.2 29.0  Dyal et al., 2005 

Mortierella vinacea various 66.0 20  Ratledge, 1982 

Mucor albo-ater glucose 42.0 3  Ratledge, 1982 

Entomorphthora thaxteriana sucrose 36.2 14  Ratledge, 1982 
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Table 1c. Oleaginous fungi (continued). 
 

Oleaginous yeast Substrate 
Fat content 

(% dry mass) 
Dry mass 

(g/L) 
 Reference 

Mucor miehei glucose 25.0 -  Ratledge, 1982 

Mucor mucedo glucose 51.0 5  Ratledge, 1982 

Mucor plumbeus maltose 23.5 -  Sajbidor et al., 1988 

Mucor plumbeus glucose 28.0 5.5  Ratledge, 1982 

Mucor pusillus glucose 26.0 -  Ratledge, 1982 

Mucor ramannianus glucose 56.0 1  Ratledge, 1982 

Mucor spinosus glucose 47.0 3.3  Ratledge, 1982 

Myrothecium sp carbohydrate 30.0 -  Ratledge, 1982 

Parietochloris incica agarose 27.1 5.4  Bigogno et al, 2002 

Penicillium gladioli sucrose 32.0 5.7  Ratledge, 1982 

Penicillium javanicum mango seed 57.1 0.56  Jambhulkar et al., 1986 

Penicillium lilacinum sucrose 47.0 12.4  Ratledge, 1982 

Penicillium lilacinum glucose 56.0 17  Ratledge, 1982 

Penicillium soppi glucose 40.0 12.5  Ratledge, 1982 

Penicillium spinulosum sucrose 64.0 16  Ratledge, 1982 

Pythium irregulare glucose 42.0 -  Ratledge, 1982 

Pythium irregulare sucrose 31.0 -  Ratledge, 1982 

Pythium ultimum glucose 48.0 -  Ratledge, 1982 

Rhizopus arrihizus glucose 49.0 -  Ratledge, 1982 

Rhizopus nigricans lactose 50.0 0.85  Jambhulkar et al., 1986 
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Table 1c. Oleaginous fungi (continued). 
 

Oleaginous yeast Substrate 
Fat content 

(% dry mass) 
Dry mass 

(g/L) 
 Reference 

Rhizopus oryzea glucose 36.0 2.5  Ratledge, 1982 

Sclerotium bataticola glucose 46.0 5  Ratledge, 1982 

Stilbella thermophila glucose 38.0 -  Ratledge, 1982 

Tricholoma nudum glucose 48.0 5.5  Ratledge, 1982 

Trichophyton verrucosum glucose 44.0 -  Ratledge, 1982 

Trycomyces blakesleeanus glucose 33.0 1  Ratledge, 1982 

Ustilago zeae glucose 59.0 3.3  Ratledge, 1982 
 

“-“ indicates that data was not reported. 

 
 
Table 2. Distribution of glycerol consumption in different products and industries (adapted from Johnson and Taconi, 2007)  

Industry Consumption (%) 

Cosmetics, soaps, pharmaceuticals 26 

Alkyd resins 6 

Food and drinks 8 

Tobacco 4 

Cellulose films 3 

Polyglycerol esters 12 

Esters 11 

Paper 1 

Resale 17 

Other uses 12 
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Table 3.Possible valued products that can be made by glycerol reduction or oxidation (adapted from 
Johnson and Taconi, 2007) 
 

Name 
Chemical 
formula 

Chemical structure Price ($/lb) 
US capacity 

(MMlbs) 

Glycerol C3H8O3  
0.05-0.45 250 

Tartronic acid C3H3O5 
 

N/A N/A 

Dihydroxyacetone C3H6O3  
2.00 N/A 

Mesoxalic acid 
(Ketomalonic acid) 

C3H2O5 
 

Likely high N/A 

Glyceraldehydes C3H5O3 
 

N/A N/A 

Glyceric acid C3H6O4 
 

Likely high N/A 

Malonic acid C3H4O4  
14 < 1 

Hydroxypyruvic 
acid 

C3H4O4 
 

High N/A 

Lactic acid C3H6O3 
  

0.70-0.85 < 5 

Pyruvic acid C3H4O3 
 

High Small 

Propylene glycol C3H8O2 
 

0.44-1.00 1410 

Propionic acid C3H6O2  
0.46-0.62 440 

Glycidol C3H6O2 
 

> $11,000 N/A 

Acrylic acid C3H5O2 
 

0.45-1.01 2880 

Propanol C3H8O  0.52 260 

Isopropanol C3H8O 
 

0.28-0.49 1965 

Acetone C3H6O 
 

0.1325-0.4225 3441 

Propylene oxide C3H6O 
 

0.64-0.795 5190 

Propionaldehyde C3H6O  0.40 400 

Allyl alcohol C3H5O  1.00 60 

Acrolein C3H4O  0.64 >250 
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Figure 1. Citrate/malate cycle and the cytosolic ‘transhydrogenase’ cycle.  Enzymes: 1-pyruvate 
decarboxylase; 2-malate dehydrogenase; 3-malic enzyme; 4-pyruvate dehydrogenase; 5-citrate 
synthase; 6-ATP:citrate lyase; 7-citrate/malate translocase (Adapted from Wynn et al., 2001). 
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Figure 2. Fatty acid synthesis in animal cells and yeasts (Singh et al., 1985, Chang and Hammes, 
1990). ACP - acyl carrier protein. 
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Figure 3. The conversion of ALA into EPA and DHA (adapted from Burdge and Calder, 2005) 
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Figure 4. Biodiesel production  
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Chapter 3: Oxidative Stability of Polyunsaturated Triacylglycerols 

Encapsulated in Oleaginous Yeast 

Modified from a paper published in The Journal of the American Oil Chemists' Society 

Diliara R. Iassonova, Earl G. Hammond, Samuel E. Beattie 

Abstract 

Oleaginous yeast cells have the ability to synthesize oil from carbon sources or to adsorb 

fatty acids from their growth medium.  Fish oil or conjugated linoleic acid (CLA)-rich oils 

encapsulated in Cryptococcus curvatus were protected from oxidation for more than 7 weeks. 

Oil-containing dead and viable yeast as well as oils extracted from dead or viable yeast were 

incubated at 52 ºC in the dark.  Oils extracted from yeast at the beginning of the experiment 

began oxidizing almost immediately and exceeded peroxide values (PV) of 20 mequiv/kg 

within a few days and eventually reaching PV > 100 mequiv/kg. After 56 days of incubation, 

the PV value of oil from viable cells grown on fish oil was 3.8±0.1 and 5.5±0.8 mequiv/kg 

from dead cells.  After 42 days of incubation, the PV of oil from viable CLA-containing 

yeast was 1.1±0.2 mequiv/kg and 1.7±0.5 from dead CLA-containing yeast. C. curvatus 

encapsulation significantly improved oxidative stability of long-chain polyunsaturated fatty 

acids (LCPUFA) and CLA. Yeast cell viability was not critical for oxidative stability of the 

encapsulated oil. 

Introduction 

Fish oil is the major dietary source of omega-3 long-chain polyunsaturated fatty acids 

(LCPUFA) eicosapentaenoic acid (EPA 20:5n-3) and docosahexaenoic acid (DHA 22:6n-3). 

These fatty acids have important physiological effects in human and animal health. Studies 

have reported that consumption of EPA and DHA may prevent cardiovascular diseases and 

some types of cancer (Angerer et al., 2002; Williams and Burdge, 2006), reduce the 

symptoms in rheumatoid arthritis (Fortin et al., 1995; Hur and Park, 2007) and are essential 

for the development and function of the brain and retina (Lauritzen et al., 2001). 
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Conjugated linoleic acids (CLA) are a family of diene fatty acids that are positional and 

geometrical-isomers of cis, cis-9,12-octadecadienoic acid (18:2).  Numerous health benefits 

have been associated with CLA, including possible amelioration of carcinogenicity, diabetes, 

obesity, and atherosclerosis. Moreover, CLA may have stimulating effects on bone formation 

and the immune system (Chilliard et al., 2000; Belury, 2002; Hur and Park, 2007). 

CLA and LCPUFA are very susceptible to oxidation because of their high degree of 

unsaturation and the positioning of their double bonds.  The lack of oxidative stability of 

LCPUFA is a serious problem that affects their consumption and application in human and 

animal nutrition.  Feed refusal by animals has been noted for fish oils (Donovan et al., 2000) 

and LCPUFA-containing algae (Franklin et al., 1999).  Off-flavors in marine oils, which limit 

their use, are attributed to both the source and the products of LCPUFA oxidation.  

Encapsulating LCPUFA helps stabilize these oxidation-prone fatty acids. 

Cryptococcus curvatus (C. curvatus) is an oleaginous yeast that was first isolated at Iowa 

State University (Moon and Hammond, 1978).  C. curvatus grows in cheese whey permeate 

and converts lactose to fatty acids, which it stores in discrete, inter-cellular droplets as 

triacylglycerols (TAG). It can accumulate up to 60% of its dry weight as lipids when grown 

under nitrogen limitation (Park et al, 1991).  In addition to converting simple sugars to lipids, 

C. curvatus is able to grow on a variety of fats and oils and deposit them as TAG with 

approximately the same fatty acid composition found in the substrate (Lee et al, 1992).  In 

the present study, the oxidative stability of yeast-encapsulated polyunsaturated fatty acids 

from fish oil and CLA-rich oil was determined in dead and viable yeast cells.  The hypothesis 

of this research was that the encapsulation in oleaginous yeast could provide an adequate 

method for the protection of LCPUFA against oxidation. 

Materials and Methods 

Culture and culturing conditions 

Freeze-dried C. curvatus ATCC 20509 (formerly known as Candida curvata D and 

Apiotrichum curvatum) was activated by suspension in yeast and mold broth DifcoTM 
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(Becton, Dickinson and Company, Sparks, MD, USA) and incubation at 30ºC for 24 h.  After 

plating the culture on Potato Dextrose Agar DifcoTM (Becton, Dickinson and Company, 

Sparks, MD, USA), a colony was transferred from the plate to a basal medium broth 

supplemented with carbon and nitrogen sources. The basal medium was KH2PO4 2.5 g/L, 

MgSO4·7 H2O 1.0 g/L, CaCl2·2 H2O 0.2 g/L, FeCl3·6 H2O 0.02 g/L, MnSO4·H2O 0.002 g/L, 

ZnSO4·7 H2O 0.0001 g/L, CuSO4·5 H2O 0.0001 g/L, and NaCl 0.6 g/L (Vega et al., 1988).  

The autoclaved basal medium containing 50 g/L lactose was adjusted to pH 5.4 with 3 N 

hydrochloric acid solution.  Thiamine hydrochloride (0.001 g/L) and asparagine (0.8 gL) 

were added by sterile filtration. C. curvatus was grown in shake flasks at 30 ºC for 24 h with 

agitation (200 rpm) and transferred three times into fresh medium.  The third transfer was 

used as inoculum for the encapsulation experiments. 

Fish oil encapsulation  

A 2-L fermenter (Biostat M, B. Braun, Allentown, PA, USA) containing the basal medium 

and 13.5 g/L lactose was sterilized in the fermenter jar; and sterile asparagine and thiamine 

hydrochloride were added. A 2% inoculum of a 24-h yeast culture (30 ml/1.5 L) was used. 

Air flow, dissolved carbon dioxide, temperature, and agitation were monitored.  The pH was 

automatically adjusted to 5.4 by adding 0.5 M sodium hydroxide solution. After 24 h of 

fermentation, 27 g sterile menhaden fish oil (Omega Protein, Inc., Reedville, VA, USA) 

containing 27 mg of butylated hydroxyanisole (BHA) was added and the fermentation was 

continued for an additional 72 h. 

CLA encapsulation was done in Fernbach shake flasks containing 1 L of medium similar to 

that used for fish oil.  The flasks were shaken at 200 rpm at 30 ºC. After 24 h of fermentation, 

18 g of autoclaved Clarinol TM A-80, containing 38.6% c9, t11-CLA and 35.4% t10, c12-

CLA (Loders Croklaan, Wormerveer, The Netherlands) and 18 mg BHA. The fermentation 

was continued for an additional 72 h. 

De novo yeast oil synthesis was achieved under the same conditions except the lactose level 

initially was 50 g/L, no oil or antioxidants were added and fermentation was continued for 96 

h.  Growth was monitored by direct microscopic counts using a hemocytometer. Lactose 
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utilization was determined by using an assay kit (Boehringer Mannheim/R-Biopharm AG, 

Darmstadt, Germany). 

All fermentations were performed in at least duplicate; de novo synthesis – six fermentations, 

fish oil encapsulation – two fermentations, CLA encapsulation – two fermentations. 

Yeast and oil extraction 

Oils were fed to the yeast in excess.  Thus, it was necessary to remove excess fish oil or 

Clarinol TM A-80 from the yeast before the oxidation experiments began.  The contents of 

the fish oil and CLA fermentations were washed with 0.5 L of hexane to remove the 

unassimilated oil.  The hexane layer was recovered and evaporated. Yeast cell were 

harvested by centrifugation at 9,000 g for 30 min and washed twice with distilled water, and 

the yeast phase was freeze-dried (Virtis Ultra-35, Gardiner, NY, USA). Lipids were extracted 

from the wet yeast by sequential ethanol, hexane and benzene extractions according to 

Hammond et al. (1981).  Lipids from the freeze-dried yeast cells were extracted by the 

methanol-chloroform method (Moon and Hammond, 1978). 

Fatty acid composition 

Recovered oils were converted to methyl esters with 4% sulfuric acid in methanol at 50 °C 

overnight. Fatty acid composition was obtained by gas chromatography with a HP 5890 

Series II gas chromatograph (Hewlett-Packard Company) with a fused-silica capillary 

column SP-2423 (60 m x 0.25 mm i.d., 0.20 µm) (Supelco, Inc., Bellefontaine, PA). The 

carrier gas (helium) flow rate was 1.9 ml/min and the split ratio was 24.8. The column 

temperature was held at 140 ºC for 6 min, programmed to 220 ºC at 10 ºC/min and held at 

220 ºC for 15 min. The injector and detector temperatures were 230 ºC. Quantitative analysis 

was done using methyl heptadecanoate as an internal standard. 

Stability test 

To compare the oxidative stability of encapsulated oils in dead and viable yeast, half of the 

freeze-dried fish oil-encapsulated yeast (FY) and yeast with de novo synthesized oil (LY) 
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were killed by autoclaving for 15 min. Half of the CLA-encapsulated yeast cells (CLAY) 

were killed immediately after fermentation and hexane washing by exposure to 55 ºC for 2 h. 

Samples of all the yeast treatments were plated on potato dextrose agar to verify that the 

thermal treatments had been effective. Oil from the freeze-dried dead and viable yeast was 

extracted by the methanol–chloroform method (Moon and Hammond, 1978) and incubated at 

52 ºC in the dark. Dead and viable yeast cells were also incubated at 52 ºC in the dark, and 

periodically oil was extracted from the yeast by the methanol–chloroform method.  Peroxide 

values (PV) of oils were determined according to a modified iron oxidation test (Hamm and 

Hammond, 1967). In this method oil samples are mixed with ammonium thiocyanate and 

ferrous chloride solution and after 10 min absorbance at 515 nm is measured. PV was 

calculated based on a standard curve, which was generated by using oils of known PV 

(standards). The AOCS method Cd 8–53 (Firestone, 1998) was used determine the PV value 

of the standards used to establish the standard curve. 

Statistical analysis 

Data from the PV measurements were plotted against time. Data were analyzed by using 

analysis of variance (ANOVA) with the SAS mixed models procedure. Repeated measures 

method was used for PV comparisons over time. The level of significance was set at α= 0.05. 

Results and Discussion 

Fermentation results 

Cryptococcus curvatus fermentation can be divided into two phases consisting of a 24-h 

growth phase when all nutrients are abundant followed by a 72-h fattening phase when 

nitrogen is limiting and the cells biosynthesize or accumulate fat.  When C. curvatus was 

grown on media with 50 g/L lactose, yeast-produced biomass until nitrogen was depleted and 

then residual lactose was converted to oil. Such yeast (LY) had a lipid content of 41.6±3.7% 

by weight and a dry cell mass of 15.7±0.6 g/L after 4 days of fermentation (Table 1). C. 

curvatus grew faster and produced more biomass when lactose was used as the carbon source 

compared with fish oil as carbon source.  Because of this, lactose was used as the carbon 
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source for the growth phase in all experiments. During the growth phase, the biomass 

production rate was inversely related to the amount of lactose in the media (data not shown).  

After 24 h of fermentation, dry cell mass was 10.0±1.8 g/L, the yeast oil content was 

8.9±0.9% of cell dry weight, and only 0.1±0.3 g/L of the lactose of the initial 13.5 g/L was 

left in the media. Then, 18 g/L fish oil or Clarinol TM A-80 were added as a carbon source 

for the lipid accumulation phase where growth ceases while oil content increases. Yeast were 

able to assimilate or use over 88.8% of the fish oil and 97.2% of Clarinol TM A-80 in their 

medium as determined by the residual oil in the hexane extractions.  Lee et al. (1992) have 

shown that the yeast changed the positions of the fatty acids on the glycerol backbone 

suggesting that the yeast hydrolyze and re-esterify the feedstock TAG during oil 

accumulation.  Possibly, some of the fatty acids were used for energy production.  The yeast 

accumulating CLA showed the highest lipid content, 68.9% of cell dry weight. Previous 

studies reported that C. curvatus was able to grow well on TAG and long chain unsaturated 

fatty acids (Lee et al., 1992, 1993).  The fatty acid profile of yeast oils was similar to the 

substrate oil but with greater percentage of saturated acyl groups and oleate and lower 

percentage of polyunsaturated fatty acids (Table 2).  This change may be caused partially by 

some oil production from lactose before the medium oils were added.  Yeast fermented on 

lactose only (LY) synthesized oil rich in oleate, palmitate, and stearate (Table 2). 

Stability test results 

For each of the feedstock oils, there was no difference in the fatty acid profiles of 

encapsulated oils extracted from dead and viable yeast.  Oil extracted from LY on the starting 

day of the experiment had a PV of 0.7±0.2 mequiv/kg for dead yeast and 0.8±0.1 mequiv/kg 

for viable yeast. Oil extracted on the 57th day of incubation of LY at 52 ºC had mean PV of 

2.0±0.4 mequiv/kg for dead yeast and 1.3±0.5 mequiv/kg for viable yeast (Figure 1).  The 

mean PV of lipid extracted on the starting day from dead and viable LY and stored at 52 ºC 

for 57 days was 174.4±0.6 and 200.0±0.6 mequiv/kg, respectively (Figure 1). Thus, extracted 

LY oil oxidized significantly faster than encapsulated LY oil, and viable encapsulated LY oil 

had slightly lower PV than dead-encapsulated LY oil.  Extracted LY oil from viable yeast 

oxidized faster than did extracted LY oil from dead yeast.  Similar to LY oil, extracted FY oil 
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oxidized significantly faster than did encapsulated FY oil.  Initial PV of oils extracted from 

FY yeast was 2.1±0.3 mequiv/kg for dead yeast and 1.6±0.2 mequiv/kg for viable yeast 

(Figure 2).  After 28 days of storage at 52 ºC, PV of unprotected oil from viable and dead FY 

was 180.3±0.6 and 212.7±0.6 mequiv/kg, respectively.  Unprotected oils from viable and 

dead FY had polymerized by the fifth week of the experiment.  In contrast to the high 

oxidation rate of unprotected FY oils, encapsulated FY oils oxidized slowly.  After 56 days 

of incubation at 52 ºC encapsulated viable FY oil had PV equal 3.8±0.1 mequiv/kg and 

encapsulated dead FY oil had PV equal 5.5±0.8 mequiv/kg (Figure 2).   

Because of the limited sample size and initial low peroxide value of oil from CLAY, we 

measured only the stability of oil encapsulated in the yeast (Figure 3) during a 6-week period. 

After 42 days of incubation at 52 ºC, the mean PV of oil from viable CLAY did not change 

significantly compare to its PV at zero time (Figure 3). Oil from dead CLAY had initially a 

mean PV of 0.9±0.3 mequiv/kg and did not change significantly for 28 days, but at 42 days 

oil from dead CLAY had a PV of 1.7±0.5 mequiv/kg (Figure 3). 

Suzuki et al. (2004) studied oxidative stability of unprotected TAG from bitter gourd oil 

(61.6% CLA) and CLA oil (69.5% CLA) under conditions similar to ours.  They reported 

that after 4 days of incubation at 50 ºC in the dark bitter gourd oil and CLA oil had a PV over 

20 mequiv/kg. CLAY oil (48.7% CLA) contained less CLA than oils in Suzuki et al. (Suzuki 

et al., 2004) experiments but considering the LY oil stability after 42 days of incubation at 

52ºC unprotected CLA oil from yeast likely would have significantly higher PV than 1.7 

mequiv/kg. 

All encapsulated oils demonstrated impressive oxidative stability during the experimental 

time.  Our result showed that dead C. curvatus cells did not lose their ability to protect oil 

against oxidation compared with live cells. C. curvatus has a thick cell wall, and TAGs are 

stored intracellular in lipid vacuoles that have a membrane (Holdsworth et al., 1988; Park et 

al., 1991).  Cell walls and membranes reduce contact of TAG with oxygen.  Also, TAG are 

stored in lipid bodies that are small droplets separated from each other which helps prevent 

cascade oxidation.  It is unclear whether C. curvatus produces an antioxidant or takes up the 

BHA in the medium.  Possibly, oil that leaked out from damaged cells was responsible for 
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slow lipid oxidation that took place in encapsulated samples. Heat treatment kills the yeast 

but cell walls and membranes stayed intact thus their vacuole-stored TAGs continue to be 

stable to oxidation. 
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Table 1. Biomass (g/L) and lipid accumulation (% cell dry weight) of C. curvatus grown on various 
substrates.  

 

Substrate Cell dry weight (g/L) Lipid content (% dry wt.) 

50 g/L Lactose (LY) 15.7 ± 0.6 41.6 ± 3.7 

13.5 g/L Lactose + 18g/L Fish Oil (FY) 18.4 ± 1.3 49.7 ± 0.8 

13.5 g/L Lactose + 18g/L Clarinol™ (CLAY) 16.1 ± 1.0 68.9 ± 0.4 

 
 
 
 
 
 
 

Table 2. Fatty acid composition of feedstock oils and oils extracted from C. curvatus grown on 
various substrates in weight %.  
 

Encapsulated oil source Feedstock oil 
Fatty acids Lactose de novo 

synthesis 
Fish oil 

Clarinol™ 
A-80 

Fish oil 
Clarinol™ 

A-80 

14:0 0.5 5.5 9.6 6.7 4.4 

16:0 27.6 21.3 2.3 16.9 1.5 

16:1 0.6 11.0 - 9.6 - 

18:0 15.2 3.4 32.1 6.2 17.3 

18:1 48.1 27.9 5.9 13.7 2.7 

18:2 5.0 4.7 - 3.2 - 

18:3 1.0 2.4 - 3.2 - 

20:0 0.3 1.2 - 1.4 - 

c9, t11-18:2 - - 27.4 - 38.6 

t10, c12-18:2 - - 21.3 - 35.4 

20:4 - 3.4 - 4.0 - 

20:5 - 10.8 - 16.2 - 

  22:5 - 1.3 - 3.1 - 

22:6 - 5.4 - 14.0 - 

minor compounds <1% 1.5 1.4 - 1.3 - 
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Figure 1.  Peroxide values of oils extracted on day 0 and stored at 52 ºC for 57 days from dead (filled 
triangles) (standard error of the mean (SEM) ± 21.20) and viable (open triangles) (SEM ± 24.12) 
yeast fermented with 50 g/L lactose (LY), and oils extracted from dead (filled circles) (SEM ± 0.20) 
and viable (open circles) (SEM ± 0.06) lactose-fermented yeast (LY) on 0, 2, 7, 14, 25, 33, and 57 
days of incubation at 52 ºC 
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Figure 2.  Peroxide values of oils extracted from dead (filled triangles) (SEM ± 25.95) and viable 
(open triangles) (SEM ± 21.25) yeast with fish oil (FY) on day 0 and stored at 52 ºC for 56 days, and 
peroxide values of oils extracted from dead (filled circles) (SEM ± 0.36) and viable (open circles) 
(SEM ± 0.26) yeast with fish oil (FY) on 0, 1, 2, 3, 8, 14, 21, 28, 35, 42, and 56 days of incubation at 
52 ºC 
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Figure 3.  Peroxide values of oils extracted on 0, 7, 28, and 42 days of incubation at 52 ºC from dead 
(open circles) (SEM ± 0.19) and viable (filled circles) (SEM ± 0.11) yeast encapsulated with Clarinol 
TM A-80 oil (CLAY) 
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Chapter 4: Protection of Polyunsaturated Fatty Acids from Microbial 

Hydrogenation by Encapsulation in Cryptoccoccus Curvatus 

A paper to be sumbitted to The Journal of Food Science 

Diliara R. Iassonova, Donald C. Beitz, Earl G. Hammond, Samuel E. Beattie 

Abstract 

Dietary unsaturated triacylglycerols are extensively hydrolyzed by rumen lipases and the 

resulting fatty acids are hydrogenated by rumen bacteria to yield more saturated fatty acids, 

which are delivered to the small intestine.  The objective of this experiment was to compare 

the survival of various polyunsatured fatty acids (PUFA) that were either unprotected or 

encapsulated in viable or dead Cryptococcus curvatus yeast cells and incubated with 

anaerobic rumen fluid.  Linseed and fish oils were encapsulated separately in yeast and some 

of the yeast containing encapsulated fish oil were killed with a heat treatment.  These 

treatments along with unprotected linseed and fish oils were incubated with rumen fluid 

using in vitro anaerobic digestions.  Lipid was added to the digestions at 50, 100 or 200 mg.  

Samples were taken at 0, 2, 4, 8, 16 and 24 h, and the fat was extracted, converted to methyl 

esters and analyzed by gas chromatography.  Unsaturated fatty acid concentrations were 

greater for the lipids protected by encapsulation during exposure to the rumen fluid than for 

unprotected linseed and fish oils.  After 24 h of incubation, 54-82% of protected PUFA 

remained compared with less than 13% for unprotected fish or linseed oils.  Yeast cell 

viability was not necessary for the stability of the encapsulated fish oil.  Encapsulation in 

yeast was an effective method to partially protect PUFA from rumen hydrogenation.  

Introduction 

Dietary long-chain omega-3 fatty acids, specifically eicosapentaenoic (EPA) and 

docosahexaenoic (DHA) acids, can contribute various health benefits to humans and animals 

(Nestel, 1987; Stone, 1996; Ruxton et al., 2004; Wang et al., 2006; Bilby et al., 2006).  α-

Linolenic acid (ALA) can be elongated to long-chain omega-3 fatty acids by humans 

(Vermunt et al., 2000; Barcelo-Coblijn et al., 2008).  Fish oils and linseed oil are good 
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sources of these fatty acids (Kris-Etherton et al., 2003).  Many feel that it would be 

advantageous to raise the amounts of omega-3- fatty acids in milk (Pennington and Davis, 

1975; Grummer, 1991; Franklin et al., 1999).  Direct  supplementation of the diets of 

ruminant animal with fish and linseed seed oils have resulted in some PUFA increases in 

milk, but these desirable results are associated with feed refusal and a reduction in  milk fat 

and milk production (Baer et al., 2001; Loor et al., 2005; Murphy et al., 2008).  In vitro 

experiments have demonstrated that milk fat from cows supplemented with omega-3 fatty 

acids was low in PUFA because the PUFA were extensively hydrogenated in the rumen 

(Enjalbert et al., 2003; Dohme et al., 2003; Troegeler-Meynadier et al., 2003; Carriquiry et 

al., 2008).  As a result, the fatty acids in the milk are predominantly saturated. Dietary 

linoleic and linolenic acids are hydrogenated almost completely to stearic acid with 

conjugated linoleic acid (CLA) and trans-vaccenic acid (TVA) as intermediates (Wide and 

Dawson, 1966; Vossenberg and Joblin, 2003; Jenkins et al., 2008).  CLA, which has 

demonstrated anticarcinogenic and antiatherogenic effects in animals, could be potentially 

beneficial to human health (Belury, 2002, 2003).  The desaturation of TVA by the ∆9-

desaturase enzyme in animal tissues is the predominant pathway for cis-9, trans-11 CLA 

synthesis in ruminant animals (Jenkins et al., 2008).   

Cryptococcus curvatus is an oleaginous yeast that was first isolated at Iowa State University 

(Moon et al., 1978).  C. curvatus grows well in cheese whey permeate and converts lactose 

into triacylglycerols, which the yeast stores as intercellular droplets.  C. curvatus can 

accumulate up to 60% of its dry weight as lipids when grown under nitrogen limitation (Park 

et al., 1991).  C. curvatus also can grow on fat, which the yeast deposits as triacylglycerols 

with little modification of the fats unsaturation or chain length of the constituent fatty acids 

(Lee et al., 1992).  

Our hypothesis was that PUFA from fish and linseed oils and encapsulated in Cryptococcus 

curvatus cells would be protected from rumen hydrogenation.  To test this hypothesis, we 

compared the survival of various PUFA encapsulated into viable and dead C. curvatus cells 

with unprotected oil when added to anaerobic rumen fluid at various concentrations.  In vitro 
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methods were used because they have been widely used for the rumen metabolism studies 

and they are considerably less expensive and time consuming than in vivo methods. 

Materials and Methods 

Culture  

Freeze dried C. curvatus ATCC 20509 was activated by growing on DifcoTM Yeast and Mold 

Broth (Becton, Dickinson and Company, Sparks, MD, USA) at 30˚C for 24 h.  The culture 

was plated on DifcoTM Potato Dextrose Agar.  A colony was transferred from the plate to a 

basal medium supplemented with 50g/L lactose. The basal medium was 2.5 g/L KH2PO4, 1.0 

g/L MgSO4
.7H2O, 0.2 g/L CaCl2

.2H2O, 20.0 mg/L FeCl3
.6H2O, 2.0 mg/L MnSO4

.H2O, 1.0 

mg/L ZnSO4
.7H2O, 0.1 mg/L CuSO4

.5H2O, and 60 mg/L NaCl (Vega et al, 1988). The 

autoclaved synthetic medium was adjusted to pH 5.4 with 3 N hydrochloric acid solution.  

Thiamine hydrochloride (1.0 mg/L) and asparagine (0.8 g/L) were added to the synthetic 

medium by sterile filtration.  C. curvatus was grown in shake flasks at 30˚C for 24 h with 

agitation (200 rpm) and transferred three times into fresh medium. The third transfer was 

used as inoculum for the encapsulation experiments. 

Fermenter 

A 20-L Bioflo 4500 Fermenter/Bioreactor (New Brunswick Scientific, Edison, NJ) equipped 

with air flow, temperature, and agitation control was used.  The pH was controlled with 0.5 

M sodium hydroxide and 0.5 N hydrochloric acid solutions. Dissolved oxygen was 

monitored, and 1-2 mL silicone antifoam 204 (Sigma-Aldrich, Saint Louis, MI) was added as 

needed.     

The synthetic medium with 1.35% lactose and without asparagine and thiamine was 

sterilized in the fermenter jar.  Asparagine and thiamine were added by sterile filtration to the 

sterilized, cooled basal media.  The medium was adjusted to pH 5.4 and 30.0°C, and 

saturated with air at 20 L/min, and 400 mL of C. curvatus inoculum was added.  After 20 h 

of fermentation the air rate was decreased to 5 L/min, and 360 g sterile menhaden fish oil 

(Omega Protein, Inc, Reedville, VA, USA) or linseed oil (Rexall, Inc., Boca Raton, FL) was 
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added at 0.06 ml/min.  Both oils were supplemented with 0.36 g butylated hydroxy anisole 

(BHA).  The oil accumulation continued for 216 h. Sterile samples were taken at 0, 1, 2, 4, 5, 

6, 12, 24 h and then daily in duplicates.  Lactose utilization was measured by lactose assay 

(Boehringer Mannheim/R-Biopharm AG, Darmstadt, Germany), and direct microscopic cell 

counts were performed with a hemocytometer.  Two fermentations with linseed oil 

encapsulation and four fermentations with fish oil encapsulation were performed for the in 

vitro experiments. 

Yeast and oil extraction 

For the oil fermentations, the content of the fermenter jar was washed with 2 L hexane to 

remove the unassimilated oil.  The upper, hexane layer was recovered and evaporated.  Yeast 

cell were harvested by centrifugation at 9000 g for 30 min and washed twice with distilled 

water.  Lipid was extracted by successive ethanol, hexane, and benzene extractions according 

to Hammond et al. (1981).  Recovered oils were converted to methyl esters with 4% sulfuric 

acid in methanol at 90°C for 90 min for fatty acid composition analysis (Selivonchik, 1977).  

Fatty acid composition was obtained by gas chromatography with a HP 5890 Series II gas 

chromatograph (Hewlett-Packer Company, Avondale, PA) with a fused-silica capillary SP-

2423 column (60 m x 0.25 mm i.d., 0.20 µm) (Supelco, Inc., Bellefonter, PA).  The carrier 

gas helium at a flow rate of 1.9 mL/min, and the split ratio was 24.8.  The column 

temperature was held at 140°C for 6 min, programmed to 220°C at 10°C/min and held at 

220°C for 26 min.  The injector and detector temperatures were 230°C.  Quantitative analysis 

was done using heptadecanoic acid as an internal standard. 

In vitro experiments 

Cows (n=2) with a rumen fistulas supplied rumen fluid.  Rumen fluids were collected before 

the morning meal, and 1 L was filtered through 4 layers of cheese cloth and mixed with 37.5 

g of ground hay and 1 L of buffer solution containing 9.24 g/L NaHCO3, 19.5 g/L 

Na2HPO4.2H2O, 0.705 g/L NaCl, 0.675 g/L KCl, 0.108 g/L CaCl2.2H2O, and 0.18 g/L  

MgSO4.7H2O (Enjalbert et al., 2003) pre warmed to 39°C, and saturated with CO2 (pH 6.9).  

The 50:50 mixture of rumen fluid and buffer solution (RFB) was brought to the laboratory 
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within 1 h after fluid collection in a thermos bottle.  The RFB was incubated with linseed oil 

encapsulated in viable yeast (LY), fish oil (FO) encapsulated in both viable (FY) and dead 

yeast (dFY), and unprotected linseed oil (LO) and FO and at three concentrations of oil for 

the each source 50, 100 and 200 mg/20 mL RFB.  The fatty acid composition of the oil 

sources are presented in Table 1.  Wet yeast encapsulated with FO from two fermentations 

were killed after harvesting and hexane washing by exposure to 55˚C for 2 h.  Samples of the 

dead yeast were plated on potato dextrose agar to verify that the thermal treatments had been 

effective.  A control RFB without any added oil source was also prepared.  Tubes with 20 

mL of RFB and oil source were gassed with N2 before closing and placed in a shaker at 39°C 

and 130 rpm.  Six tubes for each variable were prepared.  Incubation was stopped by placing 

the tubes in freezer after 0, 2, 4, 8, 16 and 24 h of incubation. The frozen samples were 

freeze-dried (Virtis Ultra-35, Gardiner, NY, USA), and the lipid was extracted by 

consecutive treatment with ethanol, hexane and benzene according to Hammond et al. 

(1981).  Recovered oils were converted to methyl esters with 4% sulfuric acid in methanol at 

90°C for 90 min for fatty acid composition analysis. Methyl esters retention times, including 

11-trans-vaccenic acid and cis-9, trans-11-CLA, were identified by commercial standards 

(Nu-Check Prep, Inc, MN, USA).  

Statistical analysis 

Data were analyzed by a analysis of variance (ANOVA) with the SAS 9.1 (SAS Institute, 

Cary, NC) general linear model procedure for randomized block design. The statistical model 

included fixed effects encapsulation, fat content, hr of incubation and their interactions, 

where vial effect was considered as a block.  Differences were considered significant when 

P<0.05. 

Results 

PUFA encapsulation 

C. curvatus was grown in a 20-L fermenter in two stages. First, to achieve maximum 

biomass, C. curvatus was grown in a media with 1.35% (w/w) lactose and 0.8 g/L asparagine 
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until the biomass reached a maximum and the lactose was completely utilized, but little fat 

was deposited.  The amount of lactose as well as dissolved oxygen sharply decreased during 

the first 14 h to 20.5% for lactose and 2.8% for dissolved oxygen. Subsequently, the amount 

of lactose slowly decreased to 1.3% and dissolved oxygen increased to 80% by 24 h.  Cell 

number reached a maximum at 13 h and remained constant.  Next a lipid substrate was 

added, and lipid accumulation was allowed for 9 days.  During the “lipid accumulation” 

stage, C. curvatus accumulated lipids slowly. The final dry yeast yield and lipid production 

are reported in Table 1.  Yeast with encapsulated linseed seed oil (LY) and fish oil (FY) 

accumulated 33.1 and 34.8% of oil, respectively.  The fatty acid profile of the yeast oils was 

similar to that of the substrate oil but the yeast oil was higher in saturated and oleic acid and 

lower in polyunsaturated fatty acids (Table 1).  

Experiments with linseed oil and encapsulated linseed oil in viable yeast. 

Table 2 shows experiments with LO and with LY after 24 h of incubation in RFB.  All the 

fatty acids were regarded as 100 at zero time; so, values greater than 100 indicate an increase 

while those less than 100 indicate disappearance.  Saturated fatty acids increase and 

polyunsaturated fatty acid decrease because of hydrogenation.  Monounsaturated fatty acids 

can increase or decrease depending on circumstances.  The amount of palmitate increased 

during the 24-hour incubation.  The biggest changes occurred during the first 4 h. Samples 

with LO demonstrated a significantly higher palmitate increase than samples with LY (p< 

0.05).  There also was a significant effect of the amount of added oil.  For LO, there was an 

increase of palmitate with the amount of oil added to the incubation.  For LY there were 

smaller differences with fat load, and the lowest oil level yielded the most palmitate at 24 h.  

The increase in amount of stearate in samples with LO was significantly greater than in LY 

samples at 24 h (Table 2) (p< 0.05).  There was no effect for stearate for the amounts of oil 

added at zero time (p> 0.05).  Similar to stearate, an increase in the amount of oleate in 

samples with LO was greater than in LY samples at 24 h (Table 2) (p< 0.05).  There also was  

effect of the amounts of fat added (Table 2) (p< 0.05). 
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LO and LY samples differed significantly in the amount of linoleate remaining  after 24-h 

incubation (Table 2).  Samples with 50 mg and 200 mg LO had less than 27% of the initial 

amount of linoleate remained after 8 h and less than 26% from initial amount at 24 h of 

incubation (Figure 1).  In the experiment with 100 mg LO added only 52.1% remained at 8 h 

and 35.4% at 24 h.  In the experiments with LY, the amount of linoleate for all these added 

fat concentrations decreased gradually during incubation.  After 8 h of incubation 73-79% 

from initial amounts of linoleate were recovered, and after 24 h of incubation 46-81% 

linoleate remained in the samples (Table 2).  

The amounts of ALA remaining in the samples were significantly different for LO compared 

with LY (Figure 1) (p< 0.05).  There was no significant effect of the amount of added fat on 

ALA amounts, and all fat levels behaved similarly (p > 0.05).  In LO experiments, only 11-

15% of the initial amount of ALA remained after 8 h of incubation and at 24 h less than 

14.3% remained.  In experiments with LY the amount ALA decreased gradually during 

incubation. After 8 h of incubation 54-79% of the initial amount of ALA remained, and after 

24 h of incubation 44-51% of the initial remained (Figure 1). 

The amount of TVA increased over time from 0 at zero time to several mg/g lipid at 24 h 

(Figure 2). The highest amount of TVA was found in samples with 200 mg LY and 200 mg 

LO.  The amount of CLA increased significantly with time of incubation and the amount  

increased significantly with added oil load.  Samples with LY produced less CLA formation 

compared to samples with LO as might be expected if encapsulation protects the oil from 

hydrogenation (Figure 2). 

Experiments with fish oil and encapsulated fish oil in viable and dead yeast 

In experiments with FO, the amount of palmitate produced during 24-h incubation was 

higher than in samples with FY (Table 3).  After 24-h incubation 50, 100, and 200 mg FO 

samples produced 117, 146, and 143% of palmitate.  Correspondingly, with similar amount 

of oil added as FY, the yields of palmitate were 108%, 104%, and 139%.  
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All FO and FY samples demonstrate decreases in palmitoleate during the first 8 h of 

incubation, but, in later hours of incubation, the amounts of palmitoleate in 100 and 200 mg  

samples the palmitate increased to 96 and 104% at 24 h of incubation (Table 3) while the 

amount of the 50 mg FO and all the FY samples continued to decrease.    

Similar to the results with LO and LY, the amount of stearate produced during incubation 

was much greater for FO than for FY samples (Table 3).  FY samples demonstrated slow and 

gradual changes in amount of stearate. 

In contrast to the LO and LY experiments, the amounts of oleate in FO and FY samples 

significantly decreased during incubation.  The two higher concentrations of FO samples 

decrease rapidly in oleate during the first 8 h of incubation.   FY samples gradually decreased 

in their amount of oleate during incubation and remained at 77-99% at 24 h of incubation 

(Table 3). 

During incubation FO samples lost significantly more linoleate than did FY samples (Table 

3) (p< 0.05).  Amounts of linoleate decreased significantly during the first 8 h of incubation 

for all samples.  At 24 h of incubation FO samples remained less than 13% of the original 

linoleate while FY samples retained more than 46%.  

ALA in FO samples behaved similarly to linoleate (Table 3) (p< 0.05).  At 24 h of 

incubation, FO samples remained less than 15% and FY samples retained more than 42% of 

the initial amounts of ALA. 

The amount of arachidonate decreased over time (Table 3).  FO samples retained 

significantly less arachidonate than did the FY as the higher oil loading values.  For both FO 

and FY, retention at the 50 mg loading was significantly lower that at higher loadings.   

In experiments with dFY, only changes in the amounts of EPA and DHA with incubation 

time were statistically significant.  Amounts of EPA significantly decreased over time and 

depended on fat source (Figure 3).  Samples with FY and dFY demonstrated significantly 

less hydrogenation of EPA than did samples with FO.  For FY samples, the most rapid loss 

happened during first 4 h of the incubation, and 49-83% of the initial EPA remained at 24 h. 
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In experiments with FO, EPA sharply decreased during first 8 h of incubation then decreased 

slowly or remained constant. At 24 h of incubation samples with FO contained 20-37% of 

initial EPA. 

All FO and FY samples demonstrate similar changes in DHA amounts with time. Except for 

50 mg FY samples, 40-60% of the initial amount was hydrogenated during the first 8 h of 

incubation and then remained stable or slowly decreased (Figure 3 and Table 3).  DHA was 

significantly less hydrogenated in FY and dFY samples than in FO samples over time (Figure 

3).  In the experiments with FY and dFY, the amount of DHA gradually decreased with 

incubation time, and 47-84% of initial DHA remained after 24 h of incubation.  With FO 

there was a sharp decrease in DHA during first 8 h of incubation and then a slow DHA 

decrease. After 24 h of incubation only 17-27% from initial amount of DHA was left. 

As in LO experiments significant TVA and CLA formation was detected in FO experiments 

with time (Figure 4).  More TVA and CLA were formed when the oil was not encapsulated.    

Discussion 

Our results demonstrated significant protection of PUFA encapsulated in C. curvatus from 

rumen hydrogenation compared with unprotected oils.  In this study,  more than 70% of the 

linoleate and 80% of the ALA from unprotected linseed oil were hydrogenated at 8 h.  With 

unprotected FO, hydrogenation of linoleic acid and ALA was gradual, but after 24 h less than 

15% remained.  This difference in rate between LO and FO may be attributed to the greater 

proportion of the total unsaturation that these acids comprise in LO than FO.  Previous 

studies have reported wide ranges in hydrogenation rate for linoleic and linolenic acids 

(Enjalbert et al., 2003; Van Nevel and Demeyer, 1996; Ribeiro et al., 2007), and  the 

variation seem to depend on the experiment design and the amount and source of the added 

oil.  The hydrolysis of triacylglycerol does not seem to be rate limiting step (Beam et al., 

2000; Enjalbert et al, 2003),  

EPA and DHA in unprotected fish oil were hydrogenated in smaller proportions than linoleic 

acid and ALA, which agrees with previous studies.  AbuGhazaleh and Jenkins in 2004 
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reported higher hydrogenation of EPA compared with DHA, but our results demonstrated 

very similar rates at 24 h in unprotected FO.  Gulati et al (1999) reported only 15% of EPA 

and DHA hydrogenated after 24 h of incubation, which is considerably less than in our 

unprotected FO.   

Encapsulation allowed more than 47% of EPA and DHA to escape hydrogenation after 24 h.  

The effect of yeast viability on protection from hydrogenation was tested by the dFY 

experiments.  Significantly more stearate and palmitate were formed with unprotected oils 

than encapsulated during incubation.  Oleate was hydrogenated in samples with unprotected 

FO, and the lowest added oil amount showed the least hydrogenation.  With unprotected LO, 

significant increases in oleate were observed.  Other studies have not reported such an 

increase (Van De Vossenberg and Joblin, 2003; Proell et al., 2002), but Wilde and Dawson 

(1966) proposed an ALA hydrogenation pathway with oleic acid as one of intermediate 

products.  Thus, it is possible that LO oleic acid was hydrogenated from ALA, which is the 

most abundant fatty acid in LO.  In agreement with previous studies (Duckett et al., 2002), 

PUFA were hydrogenated to other intermediates products, CLA and TV.  The CLA and TV 

were formed more quickly from unprotected fats.   

Our results suggested that encapsulation in C. curvatus cell was an effective method to 

protect PUFA and slow their rumen hydrogenation. In spite of incomplete protection, 

encapsulation in C. curvatus may be a way to increase the PUFA content in milk and tissues.  

Previous work from our laboratory has shown that encapsulation protects PUFA from 

oxidation and that the encapsulated oil has much less fishy aroma than the fish oil that was 

fed to the yeast (Iassonova et al., 2008) 

References 

AbuGhazaleh AA, Jenkins TC (2004) Disappearance of Docosahexaenoic and 
Eicosapentaenoic Acids from Cultures of Mixed Ruminal Microorganisms J Dairy 
Sci 87:645-651 

Baer, RJ, Ryali J, Schingoethe DJ, Kasperson KM, Donovan DC, Hippen AR, Franklin ST 
(2001) Composition and properties of milk and butter from cows fed fish oil. J Dairy 
Sci 84:345-353 



www.manaraa.com

 59 

Barcelo-Coblijn G, Murphy EJ, Othman R, Moghadasian MH, Kashour T, Friel KJ (2008) 
Flaxseed oil and fish-oil capsule consumption alters human red blood cell n-3 fatty 
acid composition: a multiple-dosing trial comparing 2 sources of n-3 fatty acid. Am J 
Clinical Nutr 8:801-809 

Bauman DE, Perfield JW, de Veth  MJ, Lock AL (2003) New perspectives on lipid digestion 
and metabolism in ruminants, in Proceedings of the Cornell Nutritional Comference, 
Cornell University, Ithaca, NY. , pp 175-189 

Beam TM, Jenkins TC, Moate PJ, Kohn RA, Palmquist DL (2000) Effects of amount and 
source of fat on the rates of lipolysis and biohydrogenation of fatty acids in ruminal 
contents. J Dairy Sci 83:2564-2573 

Belury MA (2002) Dietary conjugated linoleic acid in health: physiological effects and 
mechanisms of action. Annu Rev Nutr 22:505-531 

Belury M (2003) Inhibition of carcinogenesis by conjugated linoleic acid: potential 
mechanisms of action. J Nutr 132:2995-2998 

Bilby TR, Sozzi A, Lopez MM, Silvestre FT, Ealy AD, Staples CR, Thatcher WW (2006) 
Pregnancy, bovine somatotropin, and dietary n-3 fatty acids in lactating dairy cows: 
ovarian, conceptus, and growth hormone–insulin-like growth factor system responses. 
J Dairy Sci 89:3360-3374 

Carriquiry M, Weber W, Baumgard LH, Crooker BA (2008) In vitro biohydrogenation of 
four dietary fats. Ani Feed Sci Tech 141:339-355M  

Dohme F, Fievez V, Raes K, Demeyer DI (2003) Increasing levels of two different fish oils 
lower ruminal biohydrogenation of eicosapentaenoic and docosahexaenoic acid in 
vitro. Anim Res 52:309-320 

Duckett SK, Andrae JG, Owens NF (2002) Effect of high-oil corn or added corn oil on 
ruminal biohydrogenation of fatty acids and conjugated linoleic acid formation in 
beef steers fed finishing diets. J Anim Sci 80:3353-3360 

Enjalbert F, Eynard P, Nicot MC, Troegeler-Meynadier A, Bayourthe C, Moncoulon R 
(2003) In vitro versus in situ ruminal biohydrogenation of unsaturated fatty acids 
from a raw or extruded mixture of ground canola seed/canola meal. J Dairy Sci 
86:351-359 

Franklin ST, Martin KR, Baer RJ, Schingoethe DJ, Hippen AR (1999) Dietary marine algae 
(Schizochytrium sp.) increases concentrations of conjugated linoleic, 
docosahexaenoic and transvaccenic acids in milk of dairy cows. J Nutr 129:2048-
2054 

Grummer R R (1991) Effect of feed on the composition of milk fat. J Dairy Sci 74:3244-
3257 

Gulati SK, Ashes JR, Scott TW (1999) Hydrogenation of eicosapentaenoic and 
docosahexaenoic acids and their incorporation into milk fat.  Ani Feed Sci Tech 79: 
57-64 

Hammond EG, Glatz BA, Choi Y, Teasdale MT (1981) Oil production by Candida curvata 
and extraction, composition, and properties of the oil. In: Pryde EH, Princen LH, 
Mukherjee KD (eds) New Sourses of Fats and Oils. Am Oil Chem Soc, Champaign, 
IL pp 171-187 

Iassonova DR, Hammond EG, Beattie SE (2008) Oxidative stability of polyunsaturated 
triacylglycerols encapsulated in oleaginous yeast. J Am Oil Chem Soc 85:711-716 



www.manaraa.com

 60 

Jenkins TC, Wallace RJ, Moate PJ, Mosley EE (2008) Board-invited review: recent advances 
in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. 
J Anim Sci 86:397-412 

Kris-Etherton PM, Harris WS; Appel LJ (2003) Fish consumption, fish oil, omega-3 fatty 
acids, and cardiovascular disease. Arterioscler Thromb Vasc Biol 23:151-152 

Lee I, Hammond EG, Glatz BA (1992) Triacylglycerol assembly from lipid substrates by 
Apiotrichum curvatum. In: Kyle DJ, Ratledge C (eds) Industrial Applications of 
Single Cell Oils. Am Oil Chem Soc, Champaign, IL pp 139-155 

Loor JJ, Ferlay A, Ollier A, Doreau M, Chilliard Y (2005) Relationship among trans and 
conjugated fatty acids and bovine milk fat yield due to dietary concentrate and linseed 
oil. J Dairy Sc 88:726-740 

Moon NJ, Hammond EG (1978) Oil production by fermentation of lactose and the effect of 
temperature on the fatty acid composition. J Am Oil Chem Soc 55:683-688 

Murphy JJ, Coakley M, Stanton C (2008) Supplementation of dairy cows with a fish oil 
containing supplement and sunflower oil to increase the CLA content of milk 
produced at pasture. Livestock Sci 116:332-337 

Nestel PJ (1987) Polyunsaturated fatty acids (n-3, n-6). Am J Clin Nutr 45(suppl):1161-1167 
Park WS, Murphy PA, Glatz BA (1991) Evidence of peroxisomes and peroxisomal enzyme 

activities in the oleaginous yeast Apiotrichum curvatum. Can J Microbiol 37:361-367  
Pennington JA, Davis CL(1975) Effects of intraruminal and intra-abomasal additions of cod-

liver oil on milk fat production in the cow. J Dairy Sci 58:49-55 
Proell JM, Mosley EE, Powell GL, Jenkins TC (2002) Isomerization of stable isotopically 

labeled elaidic acid to cis and trans monoenes by ruminal microbes. J Lipid Res 43: 
2072-2076 

Ribeiro CVDM, Eastridge ML, Firkins JL, St-Pierre NR, Palmquist DL (2007) Kinetics of 
fatty acid biohydrogenation in vitro. J Dairy Sci 90:1405-1416 

Ruxton CHS, Reed SC, Simpson MJA, Millington KJ (2004) The health benefits of omega-3 
polyunsaturated fatty acids: a review of the evidence. J Hum Nutr Diet 17:  449–459 

Selivonchick DP, Roots BI (1977) Lipid and fatty acyl composition of rat brain capillary 
endothelia isolated by a new technique. Lipids 12:165-169 

Stone NJ(1996) Fish consumption, fish oil, lipids, and coronary heart disease. Circulation 94: 
2337-2340 

Troegeler-Meynadier A, Nicot MC, Bayourthe C, Moncoulon R, Enjalbert F (2003) Effects 
of pH and concentrations of linoleic and linolenic acids on extent and intermediates 
of ruminal biohydrogenation in vitro. J Dairy Sci 86:4054-4063 

Van De Vossenberg JLCM, Joblin KN (2003) Biohydrogenation of C18 unsaturated fatty 
acids to stearic acid by a strain of Butyrivibrio hungatei from the bovine rumen. Lett 
Appl Microbiol 37:424-428  

Van Nevel C, Demeyer DI (1996) Control of rumen methanogenesis.  Environ Monit Assess 
42:73-97 

Vega EZ, Glatz BA, Hammond EG (1988) Optimization of banana juice fermentation for the 
production of microbial oil. Appl Environ Microbiol 54:748-752 

Vermunt SHF, Mensink RP, Simonis MMG, Hornstra G (2000) Effects of dietary α-linolenic 
acid on the conversion and oxidation of13C-α-linolenic acid. Li pids 35:137-142 



www.manaraa.com

 61 

Wang C, Harris WS, Chung M, Lichtenstein AH, Balk EM, Kupelnick B, Jordan HS, Lau J 
(2006)  n–3 Fatty acids from fish or fish-oil supplements, but not -linolenic acid, 
benefit cardiovascular disease outcomes in primary- and secondary-prevention 
studies: A systematic review. Am J Clin Nutr 84:5-17 

Wide PF, Dawson RMC (1966) The biohydrogenation of α-linolenic and oleic acid by rumen 
micro-organisms. Biochem 98:469-475 

 



www.manaraa.com

 62 

Table 1. Yield (g/L), fat as dry weight percentage and fatty acid composition of C. curvatus fattened 
with fish and linseed oils along with the fatty acid composition of the oils that were fed. Values are 
means (n=2) within the same types of oils.  
 

 
Fish oil 

Encapsulated 
ish oil 

Linseed oil 
Encapsulated 

linseed oil 

Dry yeast yield g/L - 12.36 - 14.94 

Fat content (% w/w) - 34.82 - 33.11 

Myristic 7.2 11.3 - - 

Pentadecanoic 0.4 0.3   

Palmitic 17.8 19.2 6.2 11.3 

Palmitoleic 11.1 11.0 - - 

Stearic 5.5 8.5 3.2 6.6 

Oleic 17.9 22.9 14.4 26.1 

Linoleic 3.3 2.3 12.3 13.7 

Linolenic 2.5 2.1 64.0 42.3 

Arachdonic 1.9 1.2 - - 

EPA 13.5 8.8 - - 

Docosapentenoic 3.0 1.9 - - 

DHA 14.1 9.3 - - 

Others 1.8 1.2 - - 

  
 
 
 
 
Table 2. Relative percentage of various fatty acids after 24 h of in vitro incubation of  linseed oil (50, 
100, or 200 mg per sample added at 0 time) and linseed oil encapsulated (50mg, 100mg, or 200 mg 
oil in the yeast per sample added at 0 time) in viable C. curvatus. The percentages of each fatty acid 
was arbitrarily set at 100% at 0 h. Values are means of relative amounts (%) of two independent 
experiments.   
 

Linseed oil added Encapsulated linseed oil added 
Fatty acids 

50 mg 100 mg 200mg 50 mg 100 mg 200 mg 

Palmitic 205.7 279.3 411.8 144.0 123.9 128.0 

Stearic 366.9 314.7 372.4 137.5 124.5 143.1 

Oleic 159.8 213.4 308.8 114.1 89.2 91.7 

Linoleic 25.5 35.4 25.7 81.4 65.7 46.1 

Linolenic 8.9 12.3 14.3 54.5 44.2 55.1 
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Table 3. The relative percentage of  various fatty acids after 24 h of in vitro incubation  with fish oil 
and fish oil encapsulated in either dead or viable C. curvatus. The weight percentage of each fatty 
acid was arbitrarily set at 100% at 0 h. Values are means of relative amounts (%) of two independent 
experiments. 
 

Fish oil Encapsulated fish oil (viable) 
Fatty acids 

50 mg 100 mg 200 mg 50 mg 100 mg 200 mg 

Encapsulated 
fish oil 
(dead) 

Myristic 132.2 164.3 179.4 55.2 49.4 69.8 95.3 

Palmitic 116.7 145.6 143.4 107.9 103.7 139.3 98.8 

Palmitoleic 64.0 103.8 95.6 40.3 43.9 54.4 89.2 

Stearic 381.6 284.8 299.0 153.5 107.2 143.8 112.7 

Oleic 73.9 51.6 53.8 85.3 77.0 99.8 103.8 

Linoleic 12.4 6.7 6.9 53.4 46.4 68.3 65.3 

Linolenic 12.7 14.5 14.9 60.6 42.0 71.1 73.2 

Arachidonic 29.1 51.6 53.2 36.5 81.9 106.1 58.3 

EPA 37.4 20.9 20.4 53.8 48.8 62.5 82.0 

Docosapentanoic 45.8 39.9 41.1 33.6 35.2 45.6 45.6 

DHA 26.4 22.5 16.9 57.1 47.4 65.4 79.6 
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Figure 1. Changes in ALA and linoleate amounts during in vitro incubation with linseed oil 
(direct) and linseed oil encapsulated in viable yeast. Amount of each fatty acid was arbitrarily set 
at 100% at 0 h. Values are the means of relative amounts (%) of two independent experiments 
averaged over three added fat concentrations.   
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Figure 2. Change in TVA and CLA amounts during in vitro experiments with linseed oil (direct) 
and linseed oil encapsulated in viable C. curvatus. Values are the means of absolute amounts 
(mg/g fat) of two independent experiments averaged over three added fat concentration (50, 100, 
and  200 mg).   
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Figure 3. Change in DHA and EPA percentages during in vitro experiments with fish oil (direct) 
and fish oil encapsulated in dead or viable C curvatus. Amount of each fatty acid was arbitrarily 
set at 100% at 0  h. Values are means of the relative amounts (%) of two independent experiments 
averaged over fat concentration (50, 100, and 200 mg).   
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Figure 4. Change in TVA and CLA during in vitro experiments with fish oil (direct) and fish oil 
encapsulated in viable yeast. Values are means of absolute amounts (mg/g fat) of two 
independent experiments averaged over fat concentration (50, 100, and 200 mg). 
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Chapter 5: Effects of Fish Oil Encapsulated in Yeast on Bovine Milk 

Production and Composition 

A paper to be sumbitted to The Journal of Food Science 

Diliara R. Iassonova, Donald C. Beitz, Earl G. Hammond, Samuel E. Beattie 

Abstract 

Slurries of the yeast Cryptococcus curvatus containing encapsulated long chain 

polyunsaturated omega-3 fatty acids (LCPUFA) from fish oil were incorporated into the total 

mixed ration for lactating dairy cows to determine the effect of feeding the encapsulated fatty 

acids had on milk composition and production.  The palatability of the fed LCPUFA yeast 

supplement also was monitored. After a two-week pre-supplement adjustment period, the 

encapsulated LCPUFA supplement was added to the total mixed ration in increasing amounts 

over 5 days to a maximal amount of 5.2 L of yeast /day (10.1% DM).  Animals were fed the 

encapsulated oil for a total of 25 days.  The treatment diet consisted of a regular feed with 

48.6 g encapsulated LCPUFA/day for 20 days.  Dietary yeast with encapsulated oil had no 

evidence of an effect on milk yield, milk fat content or food intake.  Dietary treatment also 

had no no evidence of an effect on milk fat composition.  No omega-3 fatty acids were 

detected in milk fat after 20 days of feeding the treatment diet.  Results from this experiment 

demonstrate that wet dead yeast containing encapsulated oil can be used as a dietary 

supplement for lactating cows; but, the yeast did not contribute fatty acids to milk fat 

synthesis. 

 

Introduction 

Dairy milk fat contains a relatively high percentage of saturated fatty acids (66%) including 

laurate (12:0), myristate (14:0), and palmitate (16:0) and therefore has a relatively high 

atherogenicity index, which is associated with a high risk of cardiovascular disease, weight 

gain, and obesity (Jensen et al., 1990; Ulbricht and Southgate,1991; Sacks and Katan, 2002).  
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There have been efforts to alter the fatty acid profile of milkfat, but these have resulted in 

little commercial success.   

For humans, consumption of the long-chain polyunsaturated omega-3 fatty acids (LCPUFA), 

eicosopentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA 22:6 n-6), has 

numerous health benefits including improved neurological development in infants and 

decreased risk of atherosclerosis and coronary heart disease (Mozaffarian et al., 2006;  Kidd, 

2007; Elvevoll et al., 2008).  The atherogenic index of milk fat can be decreased by feeding 

polyunsaturated fatty acids (PUFA) (Bauman et al., 2001, 2003).  Direct diet 

supplementation of lactating cow diets with LCPUFA from fish oil (Baer et al., 2001; 

Moussavi et al., 2007) or linseed oil (Ueda et al., 2003; Loor et al., 2005) resulted in an 

increase of these fatty acids in the milk, but there was also feed refusal and decreases in milk 

fat and milk production (Baer et al., 2001; Loor et al., 2005; Murphy et al, 2008).  Milk fat is 

low in omega 3 fatty acids because dietary  PUFA are extensively biohydrogenated in the 

rumen.  Dietary PUFA might be protected from rumen biohydrogenation by encapsulation 

with oleaginous yeast (Iassonova et al., 2007).  Results of our research have demonstrated 

that the oleaginous yeast Cryptococcus curvatus is able to accumulate LCPUFA (Iassonova 

et al., 2008), and in vitro rumen digestion studies have shown that encapsulation by yeast 

protects LCPUFA from rumen biohydrogenation during 24 h of incubation (Iassonova et al., 

2008, Chapter 4).  Encapsulated PUFA were also significantly more oxidatively stable 

compared with unprotected PUFA (Iassonova et al., 2008).  

The objective of  this in vivo study was to determine the acceptability of encapsulated PUFA 

by cows and the effect of encapsulated fat on the  composition and yield of milk.   

Materials and Methods 

Yeast encapsulated fish oil 

The encapsulated fish oil yeast (FY) supplement (10.1% DM) was produced in a 100-L fed-

batch fermentations (Iassonova et al., 2008; Chapter 6).  Yeast were killed immediately after 

fermentation by heating to 55˚C and holding for 2  h.  Samples from each fermentation were 
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plated on potato dextrose agar to verify that yeast were killed.  The dead FY were stored at 

4°C in 50-L plastic containers. The top layer containing yeast cells with fat content 

59.2±2.2% was skimmed from each container and used as the FY supplement in the feeding 

experiment. 

Feeding experiment 

Three multiparous (average lactations of 2.3±0.6) Holstein cows (average day in milk 

124±10.8) from the Iowa State University Dairy Farm were used in the feeding experiment.  

Cows consumed a control diet (Table 1) for two weeks and the treatment diet with FY for 25 

days, followed by a control diet for 12 days to observe possible post treatment effects.  

Animal care was according to the Guide for Care and Use of Agricultural Animals in 

Agricultural Research and Teaching and the experiment procedure was approved by the ISU 

Office of Research Assurances.  Cows were placed to the free-stall barn 5 days before 

starting experiment for acclimation and training for use of the Calan Broadbent (American 

Calan, Inc., Northwood, NH) feeding gates.  Animals were fed twice a day ad libitum; feed 

intake and refusal was recorded daily during the feeding trial.  Animal weight was recorded 

weekly.  After an acclimation period, all cows were fed a control diet for two weeks (weeks -

2 and -1). The yeast supplement was added to the diet during week 0, and the amount of 

yeast in the diet was increased gradually during 5 days: from 1.0 L on first day, 2.0 L on the 

second day, 3.0 L on day 3, 4.0 L on day 4, and 5.2 L on day 5.  Cows received 5.2 L/day 

(10.1% DM) FY as a treatment for 20 days.  Animals were fed the control diet for the next 12 

days.  Total feeding trial time was 57 days.  The chemical composition of the fats in the 

control and treatment diets is presented in Table 2. The yeast encapsulated oil increased the 

amount of fat in the treatment diet compared to the control by 1.03% DM.  Cows were 

milked twice a day at approximately 10:00 and 22:00, milk production was recorded 

electronically at each milking.  

Milk analysis 

A milk sample was collected from each cow every third day at the evening and the following 

morning milking. The samples were stored at -20°C and were analyzed for fatty acid 
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composition by gas chromatography as butyl esters according to Chen et al.(2004). Lipids 

were extracted from the wet yeast and from the feed by sequential ethanol, hexane and 

benzene extractions according to Hammond et al. (1981). 

Fatty acids were analyzed by gas chromatography.  The gas chromatograph was a HP 5890 

Series II instrument (Hewlett-Packer Company, Avondale, PA) with a flame ionization 

detector and with a fused-silica capillary column SP-2423 (60 m x 0.25 mm i.d., 0.20 µm) 

(Supelco, Inc., Bellefontaine, PA, USA).  The carrier gas (helium) flow rate was 1.9 mL/min, 

and the split ratio was 24.8.  The column temperature was held at 70°C for 4 min, 

programmed to 230°C at 20°C/min and held at 230°C for 5 min.  The injector and detector 

temperatures were 250°C.  Quantitative analysis was done using valeric acid (5:0) as an 

internal standard for butyric, caprylic and caproic acids;  undecanoic acid (11:0) as an 

internal standard for capric, lauric and myristic acids; and nonadecanoic (19:0)  as an internal 

standard for fatty acids longer than 14 carbons. Peaks were identified by external standards 

and verified by GC-MS.  Internal and other standards were purchased from Sigma Chemical 

Co. (St. Louis, MO) and Nu-Check Prep, Inc. (Elysian, MN). 

Mass spectrometry  

Electron impact GC/MS experiments were conducted using Micromass GCT mass 

spectrometer (Premier, Waters, Sollentuna, Sweden) coupled to the Agilent 6890 GC 

System. The mass spectra were recorded in the mass range of 35-650.  The carrier gas was 

helium, and the flow rate was kept at 1.1 ml/min throughout the run. The head pressure was 

maintained constant at 10 psi throughout the run. The injector port and the interface were set 

at 230 and 250°C, respectively.  The same sample preparation method and GC conditions 

were used, except that the GC columns were an HP-5 (polydimethylsiloxane with 5% phenyl 

groups, fused silica open tubular column, 30 m ×0.25 mm i.d., 0.25 µm film thickness) and 

SP-2423 (60 m x 0.25 mm i.d., 0.20 µm) (Supelco, Inc., Bellefontaine, PA).   
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Statistical analysis. 

Data are presented as means (n=3) with standard error (SE). The values for each subject 

(cow) averaged within treatment period (control, treatment, post), because there was no 

evidence of trend over days within period, and then were analyzed by analysis of variance 

(ANOVA) with the SAS 9.1 (SAS Institute, Cary, NC) general linear model procedure where 

cows were blocks.  The difference was considered significant at P < 0.05. 

Results and Discussion 

The treatment diet consisted of a standard feed with 310.8 g/day encapsulated oil where 48.6 

g were encapsulated EPA+DHA/day.  Dry matter intake and milk production were not 

affected by the dietary FY treatment (Table 3).  Dietary fish oil supplementation, both direct 

and protected, is reported to have negative effects on dry matter intake with 200 to 400 g/d of 

fish oil (Doreau and Chilliard 1997; Franklin et al., 1999).  The yeast product used in this 

study did not have an unpleasant oxidized fish oil aroma because fish oil was completely 

encapsulated, and when it is encapsulated it is protected from oxidation by the yeast 

(Iassonova et al., 2008).   Baer et al.(2001) reported significant reduction in milk fat when 

2% (DM) fish oil added to the cows’ diet.  In this study, no significant negative effect on 

milk fat content was found (Table 3).  Considerable research has reported that dietary fish oil 

significantly affects the fatty acid composition of milk by increasing the amounts of long 

chain PUFA, decreasing the saturation of milk fat and increasing the concentration of 

conjugated linoleic acids (CLA) and trans vaccenic acid (TVA) (Baer et al, 2001; Osborne et 

al., 2008; Moussavi et al., 2007).  In this study, no omega-3 fatty acids were detected in milk 

fat after feeding the treatment diet (Table 4) and no significant differences in the amounts of 

CLA and TVA were found in the milk taken during the control and treatment diets.  Effects 

of fish oil supplementation on CLA, TVA, EPA and DHA concentrations are shown in Table 

5.  AbuGhazaleh (2008) reported significant elevated CLA, TVA, and DHA concentrations 

when 100 g fish oil was added to the bovine diet with 300 g sunflower oil for 21 day; 

however, Murphy et al. (2008) reported increase in CLA and TVA in milk fat but they did 

not find DHA and EPA in milk fat after 100 g/day fish oil in diet for 54 days. Palmquist and 

Griinari (2006) reported increase in CLA, TVA, EPA and DHA concentrations after 21 days 
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of treatment diet; however, supplementation was  two times higher in amount of DHA and 

EPA than in present study (Table 5). Gulati et al. (2003) found that dietary 1100 g/day of 

xylose-protected fish oil increased amount of DHA and EPA in milk fat after five days of 

treatment.  It is possible that amount of supplement was insufficient to detect significant 

increase in PUFA in milk fat. On another hand, the fact that there was no significant increase 

in CLA and TVA during treatment suggested that possibly the FY survived not only rumen 

hydrogenation  but also conditions in the cows’ intestines and thereby by-pass digestive tract.  

The concentrations of milk CLA decreased after FY treatment; that finding agreed with 

previous studies results with LCPUFA supplementation (Bauman et al., 2000; AbuGhazaleh 

et al., 2004; Shingfield et al., 2006).  It may be possible to maintain resistance of FY to 

rumen digestion while encouraging intestinal digestion by treatments such as sonication, 

enzymes and/or chemical treatments that would target yeast cell wall. 

Conclusions 

Feeding dairy cows yeast containing encapsulated fish oil had no effect on their milk yield, 

milk fat content or food intake.  This treatment also had no significant effect on milk fat 

composition.  No omega-3 fatty acids from the fish oil were detected in the milk fat after 20 

days of the treatment diet.  These results demonstrated that liquid dead yeast containing 

encapsulated fish oil can be used as a dietary supplement for lactating cows; however, further 

experimentation is needed to improve transfer of the omega-3 fatty acids to the milk fat. 
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Table 1. Amounts of the ingredients of the control diet. 

Ingredient Dry matter (wt%) 

Alfalfa hay 6.1 

Cottonseed with linseed 5.1 

Soybean meal 4.0 

Corn silage 62.1 

Protein/Mineral/Vitamin premix 22.7 

 
 
 
Table 2. Fatty acid composition of control diet and oil extracted from the yeast. 
 

Fatty Acid Control (%) Encapsulated fish oil (%) 

14:0 0.98 6.63 

16:0 18.7 20.3 

16:1 1.38 12.8 

18:0 4.90 3.25 

18:1 26.8 29.4 

18:2 44.0 4.21 

18:3 3.29 3.58 

20:4 - 2.55 

20:5 - 12.7 

22:5 - 1.55 

22:6 - 2.98 

 
 

 

 
Table 3. Food intake, fat intake, body weight, milk production and milk fat content of animals fed 
control diet and the treatment diet with yeast-encapsulated fish oila. 
 

 Control Treatment Post SE b 

DMI, kg/da 29.3 30.5 30.3 1.03 

Fat intake (kg/day)c 1.65 1.96 1.65 - 

Fat intake (% DM)c 5.62 6.65 5.62 - 

Body weight (kg) 744.8 742.8 742.5 4.6 

Milk fat, (%) 2.80 3.00 2.99 0.2 

Milk production (kg/day) 56.1 54.6 54.1 0.9 
a Means (n=3) 
b 
SE-standard error 

c Calculated values 
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Table 4. Fatty acid compositions in weight percent of milka. 
 

Fatty acid Control Treatment Post SE 

4:0 3.26 2.95 2.92 0.26 

6:0 1.55 1.39 1.44 0.19 

8:0 2.23 1.33 1.43 0.31 

10:0 2.43 2.49 2.58 0.30 

12:0 3.02 3.15 3.20 0.18 

14:0 12.7 11.3 14.6 0.49 

16:0 31.1 30.7 31.7 0.81 

16:1 2.07 2.84 2.34 0.31 

18:0 10.0 9.8 9.7 0.12 

vaccenic 5.06 6.31 4.49 0.68 

18:1 20.9 21.7 20.5 0.56 

18:2 3.48 3.73 3.42 0.16 

CLA 1.49ab 1.56a 1.01b 0.10 

18:3+20:0 0.72 1.01 0.70 0.10 

aMeans (n=3) with different letters within a row differ at P < 0.05. SE-standard error 
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Table 5. Effects of fish oil supplementation on CLA, TVA, EPA and DHA contents in milk fat. 
 

Fatty Acids in Milk (g/100g total fat) 
control / treatment Supplement 

Amount 
(per day) 

DHA+EPA 
(g/day) 

Duration 
(day) 

TVA CLA EPA DHA 

Reference 

Fish Oil 100 g 23.9 21 2.3 / 5.3 0.9 / 1.8 0.10 / 0.1 0.05 / 0.07 AbuGhazaleh, 2008 

Protected Marine Algae 910 g 37.6 42 1.2 / /7.5 0.4 / 2.6 nd / nd nd / 0.46 Franklin et al.,1999 

Fish Oil 2% DM NR 35 1.4 / 6.3 0.7 / 2.6 0.09 / 0.38 nd / 0.09 Baer et al., 2001 

Fish Oil 214g 45.8 28 NR / 10.2 NR / 1.0 NR / 0.16 NR / 0.05 Osborne et al., 2008 

Fish Oil 2% DM NR 28 0.9 / 4.1 0.6 / 2.3 0.14 / 0.39 0.06 / 0.15 Ramaswamy et al., 2001 

Fish Oil 100 g NR 54 4.4/ 7.1 1.8 / 2.2 nd / nd nd / nd Murphy et al., 2008 

Fish Oil 52.5 g NR 54 4.4 / 6.98 1.8 / 2.4 nd / nd nd / nd Murphy et al., 2008 

Rumen protected Fish Oil 1100 g 200 5 4.1 / 13.7 1.8 / 2.9 nd / 1.3 nd / 2.2 Gulati et al., 2003 

Fish Oil 420 g 92.4 21 7.2 / 7.9 4.0 / 3.4 0.06 / 0.3 nd / 0.09 Palmquist, Griinari, 2006 

Protected Fish Oil 311 g 48.6 20 5.1 / 6.3 1.5 / 1.6 nd / nd nd / nd This study 

 
NR –  not reported 
nd – not detected
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Chapter 6: Scale-up Process for a Fed-batch Microbial Encapsulation of 

Fish Oil in Crypotoccus Curvatus 

A paper to be submitted to The Journal of Agricultural and Food Chemistry 

Diliara R. Iassonova, Earl G. Hammond, Samuel E. Beattie 

Abstract 

A concentrated liquid yeast product containing fish oil encapsulated in Cryptococcus 

curvatus was produced in fed-batch fermentations.  Yeast biomass production was 54.9 g/L 

and yeast fat content was 59.2% on a cell dry weight basis.  Fatty acid composition and 

phospholipids analysis of the encapsulated oil were evaluated.  In the yeast, all long chain 

polyunsaturated omega-3 fatty acids were stored in intracellular lipid droplets rather than as 

membrane lipids.  Phosphatidylcholine was the major Cryptococcus curvatus phospholipid.   

Introduction 

Previously, fish oil was encapsulated into Cryptococcus curvatus by batch and fed-batch 

fermentations on scales of 100 mL to 4 L (Iassonova et al., 2008). The objective of this study 

was to scale-up the fed-batch fermentation procedure to 100 L to achieve high biomass 

production and lipid content of C. curvatus when grown on biodiesel grade glycerol followed 

by fat accumulation on fish oil. Analysis results are reported on the fatty acid composition of 

the phospholipids and the triacylglycerols in the encapsulated oil. 

Materials and Methods 

Culture and culturing conditions 

Freeze dried C. curvatus ATCC 20509 (formerly known as Candida curvata D and 

Apiotrichum curvatum) was activated by suspension in DifcoTM Yeast and Mold broth 

(Becton, Dickinson and Company, Sparks, MD, USA) and incubation at 30˚C for 24 h.  After 

plating the culture on Potato Dextrose Agar DifcoTM (Becton, Dickinson and Company, 

Sparks, MD, USA), a colony was transferred from the plate to a basal medium broth 
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supplemented with glycerol and urea.  The basal medium was KH2PO4  2.5 g/L, 

MgSO4
.7H2O 1.0 g/L, CaCl2

.2H2O 0.2 g/L, FeCl3
.6H2O 20.0 mg/L, MnSO4

.H2O 2.0 mg/L, 

ZnSO4
.7H2O 1.0 mg/L, CuSO4

.5H2O 0.1 mg/L, and NaCl 60 mg/L (Vega et al., 1988).  The 

autoclaved basal medium containing 16 g/L of glycerol and 0.8 g/L of urea was adjusted to 

pH 5.4 with 3 N hydrochloric acid solution.  Thiamine hydrochloride (4.0 mg/L) was added 

by sterile filtration.  C. curvatus was grown in shake flasks at 30˚C for 24 h with agitation 

(200 rpm) and transferred three times into fresh medium.  The third transfer was used as 

inoculum for the 100-L encapsulation fermentations. 

Fish oil encapsulation 

A 100-L bioreactor was used in these experiments (Biostat M, B.Braun, Allentown, PA, 

USA).  The growth medium was sterilized in situ and contained the basal medium with 0.8 

g/L urea and 2000 g biodiesel glycerol (BGL) (16g/L glycerol); 4 mg/L thiamine 

hydrochloride was added by sterile filtration.  A 2-L inoculum of a 24-h yeast culture was 

used.  Air flow, dissolved carbon dioxide, temperature, and agitation were monitored.  

Fermentations were performed at 30°C, the aeration rate was 1 vol/min during growth phase 

and 0.1 vol/min during the lipid accumulation stage, and agitation was 200 rpm. The pH was 

automatically adjusted to 5.4 by adding 0.5 M sodium hydroxide solution and 3 N 

hydrochloric acid solution. After 30 h of fermentation, 2000 g (16 g/L glycerol) sterile BGL 

and 0.8 g/L urea were added. After 42 h of fermentation, 1000 g (8 g/L glycerol) sterile BGL 

and 0.8 g/L urea were added. Sterile menhaden fish oil (Omega Protein, Inc, Reedville, VA, 

USA) 1800 g, containing 1000 ppm butylated hydroxyanisole was added at 51 and 72 h of 

fermentation. Glycerol concentration was measured by test kit (Boehringer Mannheim/R-

Biopharm AG, Darmstadt, Germany) at 50 h of fermentation before menhaden oil addition.  

Total fermentation time was 96 h.  C.curvatus was killed in the fermentation vessel by heat 

treatment at 55°C for 2 h.  Total fermentation product was stored at 4°C until all 

fermentations were completed.  Biomass from six 100-L fermentations was concentrated by 

collecting top fat yeast layer that separated during storage in refrigerator. The total 

fermentation product was approximately 340 L with 10.1% (DM) and was used in a dairy 

cow feeding trial. 
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Yeast and oil extraction  

Samples (40 mL) from the fermentations were washed with 20 mL hexane to remove the 

unassimilated fish oil.  The top hexane layer was recovered and evaporated. The bottom layer 

was centrifuged at 9000 g for 30 min and washed twice with distilled water, and the wet 

yeast phase was collected.  Lipids were extracted from the wet yeast sample by sequential 

ethanol, hexane and benzene extractions according to Hammond et al. (1981).  For 

phospholipid analysis, oils extracted from three randomly selected 100-L fermentations were 

used.  Also, yeast oils from 5-L glycerol fermentations were analyzed. 

Fatty acid composition  

Oil samples (20 mg) were converted to methyl esters with 2 mL 1 N methanolic sodium 

methoxide for 1hr at room temperature. Water (1 mL) and hexane (1mL) were added to the 

methyl esters mixture and then the sample was injected in the gas chromatograph.  Fatty acid 

composition was analyzed by gas chromatography with a HP 5890 Series II gas 

chromatograph (Hewlett-Packard Company) equipped with a fused-silica capillary column 

SP-2423 (60 m x 0.25 mm i.d., 0.20 µm) (Supelco, Inc., Bellefontaine, PA, USA).  The 

carrier gas (helium) flow rate was 1.9 mL/min and the split ratio was 24.8.  The column 

temperature was held at 140°C for 6 min, programmed to 220°C at 10°C/min and held at 

220°C for 15 min.  The injector and detector temperatures were 230°C. 

Phospholipid separation from total lipids  

The total lipid sample (100 mg) diluted in 2 mL chloroform was transferred to a 1000-mg 

silica cartridge (Alltech Associate, Inc., Deerfield, IL, USA); an additional 10 mL of 

chloroform was passed through the cartridge eluting the fraction of neutral lipids components 

to the first tube.  Next, 10 mL of acetone was passed through the cartridge eluting the 

fraction of glycolipids to the second tube.  Then 10 mL of methanol was passed through the 

cartridge, collecting the phospholipids fraction to the third tube.  Solvents were removed with 

a steam nitrogen and then samples were dissolved in 0.5 mL chloroform, methylated and 



www.manaraa.com

 82 

analyzed by gas chromatography.  Lipid fractions were confirmed by thin-layer 

chromatography with appropriate standards.  To separate phospholipid classes, 100 µl of the 

total polar solution was streaked on a 20 x 20, 200-µm Selecto Flexible-Backed TLC silica 

gel plates (Selecto Scientific, Inc., Suwanee, GA, USA). Plates were developed with 

chloroform:methanol:acetic acid:water (v:v:v:v, 100:45:5:2).  Phospholipid classes were 

visualized by spraying with 0.1% 2’7’-dichlorofluorescein in methanol and viewing under 

UV light.  Phosphatidylcholine (PC) (Rf=0.33), phosphatidylinositol (PI) (Rf=0.64) and 

phosphatidylethanolamine (PE) (Rf=0.80) were identified by comparison with PC, PE and PI 

standards (Avanti Polar Lipids, Inc, Alabaster, AL, USA).  The bands were scraped from the 

plate and extracted three times with 10 mL chloroform:methanol:water (v:v:v, 1:2:08) and 

then methylated and analyzed by gas chromatography.  

Results and Discussion 

100-L fermentation 

The average biomass production and yeast cell lipid accumulation results for the six fed-

batch fermentations are shown in Table 1.  The fed-batch fermentation system noticeably 

improved the dry yeast yield (54.9 g/L) compared to batch fish oil fermentation (18.4 g/L).  

However,  we achieved higher yields when C.curvatus was fed-batch fermented on BGL as a 

sole carbon source (64.8 g/L), but these fermentations were performed on 25 times smaller 

scale.  Lipid accumulation was in fed-batch fermentations (59.2%) also was higher than the 

batch fish fermentation (49.7%) and slightly lower than fed-batch fermented on BGL 

fermentations (62.7%).  Fish oil assimilation was very efficient: only 200 g (5.6% from 

added amount) of fish oil remained in the fermentation medium after 96 h fermentation and 2 

h heat treatment.  The unassimilated oil portion was very small; however, there was a 

pronounced DHA and EPA concentration effect in the unassimilated oil (Table 2).  Lee et al. 

(1992) found that C. curvatus discriminated erucic, docosanoic, docosenoic acids but not 

eighteen carbon fatty acids from substrate oil.  From 875 g DHA+EPA fed only 634 g was 

encapsulated, 70 g was recovered from unassimilated residual and 171 g was lost. DHA and 

EPA from the lost portion could have been oxidized, or metabolized by C. curvatus for 

energy.  Physical losses and analyses accuracy contribute to this portion of DHA and EPA 
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loss.  The amount of encapsulated DHA and EPA was also affected by the residual glycerol 

from the growth stage of fermentation (Table 2).  During the growth phase, the feeding of 

BDG and urea was signaled by measurements of the dissolved oxygen.  Dissolved oxygen 

decreased rapidly during first hours of fermentation and remained low because of cellular 

respiration. When the dissolved oxygen began to increase, glycerol and/or urea 

concentrations are/is limited in the medium.  Before the lipid accumulation stage, the 

concentration of glycerol was measured in previous fermentations, and the results showed 

that residual glycerol affected the fatty acid composition of encapsulated oil.  Yeast oil 

produced de novo contained less DHA and EPA and more palmitic and oleic acids (Table 1) 

when 5 g/L glycerol from the growth stage remained in the medium at the beginning of the 

fish oil accumulation stage.  When the nitrogen source was used up, C.curvatus converted 

residual glycerol to the lipids with fatty acid composition similar to palm oil.  Fish oil was 

then introduced to the medium and fish oil encapsulation process started.  The resulting yeast 

cell fat represented a mixture of two encapsulation processes: de novo oil synthesis and 

accumulation and fish oil encapsulation, possibly via hydrolysis, intracellular transport and 

esterification.   

Phospholipids found in the yeast oil from glycerol and fish oil stages of the fermentations 

were analyzed separately and characterized.  The phospholipid fraction contained PI, PC and 

PE and amounted to 0.56-1.22% of the total lipids at 96 h.  The most abundant fraction was 

PC (92-100%). PI (0-3%) and PE (0-5%) were less abandant and were not detected in all 

samples.  These results agreed with previous results (Hammond et al., 1981).  The 

phospholipid fraction was similar for both stages of fermentations.  Table 3 shows fatty acid 

composition of phospholipid fraction at various fermentation times.  No DHA or EPA  were 

detected in the phospholipids at 72 and 96 h of fermentation.  These results suggested that 

despite expected DHA and EPA participation in the yeast cell membranes,  all the DHA and 

EPA was stored in  triacylglycerols.  The phospholipid fraction contained only six different 

fatty acids and unsaturated fatty acids were predominant (Table 3).  During the lipid 

accumulation stage, the amounts of palmitic, palmitoleic, oleic and linolenic fatty acids 

increased in the phospholipid fraction compared with growth stage, but amount of linoleic 

and stearic acids decreased (Table 3).  Akhtar et al. (1998) studied phospholipid composition 
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of C.curvatus and reported oleic and linoleic acids as a major fatty acids in phospholipid 

fraction.  In this study oleic and linoleic were also the predominant fatty acids in the 

phospholipids during fermentation.  However, except for oleic and linoleic acids, the 

amounts and kinds of fatty acids were different from those reported by Akhtar et al. (1998).  

Similar to the previous report (Hammond et al., 1981), no tocopherol in the yeast oil was 

detected.   
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Table 1.  The amounts of ingredients used and the composition of the yeast obtained in the 100L 
fermentations of C. curvatus. 
 

Component (measure) Amount 

Glycerol added (kg) 4.0 

Fish oil  added (kg) 3.6 

Residual unassimilated fat (kg) 0.2±1.3 

Lipid accumulation (% cell dry wt.) 59.2±2.2 

Biomass (g/L) 54.9±1.7 

Mean (n=7) ± stdev 
 
 
Table 2. Fatty acid composition(weight %) of the substrate fish oil, the unassimilated residual oil 
extracted from fermentation medium at 96 h, and the yeast oil formed at 51 h in the presence and 
absence of glycerol. 

Fatty acid 
Fish oil+BHA 

autoclaved 
Residual 

unassimilated oil 
Yeast oil  no glycerol 

at 51 hr 
Yeast oil  (+) glycerol 

at 51 hr 

14:0 8.4 6.0 6.7 5.2 

16:0 18.3 15.2 17.9 22.2 

16:1 11.6 7.6 10.6 10.4 

17:0 1.4 1.2 1.2 1.3 

18:0 3.3 4.5 5.5 4.6 

18:1 13.6 14.4 28.5 34.2 

18:2 2.4 2.8 3.2 5.5 

18:3 3.1 3.3 3.6 2.7 

20:4 2.8 3.3 3.3 3.1 

20:5 14.8 20.9 13.4 6.9 

22:6 9.5 14.1 6.1 2.6 

 
 

 

Table 3. Fatty acid composition (weight %) of phospholipids extracted from C. curvatus  fattened 
with fish oil  at various fermentation times (n=3). 
 

Time of fermentation 
Fatty acid 

24 h 48 h 72 h 96 h 

16:0 3.5 9.2 18.9 17.1 

16:1 - - 8.2 8.8 

18:0 11.2 12.1 6.0 8.4 

18:1 27.1 23.8 39.1 33.2 

18:2 54.1 48.3 16.4 20.3 

18:3 4.5 6.6 10.9 12.4 
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Chapter 7: Single Cell Oil Production from Industrial Grade Glycerol 

A paper to be submitted to The Journal of Agricultural and Food Chemistry 

Diliara R. Iassonova, Anthony L. Pometto III, Earl G. Hammond, Samuel E. Beattie 

Abstract 

The oleaginous yeast Cryptococcus curvatus was able to grow, as well as synthesize and 

accumulate triacylglycerols when cultivated on industrial-grade glycerol that was a 

byproduct of biodiesel production.  Glycerol and urea were the sole carbon and nitrogen 

sources, respectively.  The amount of oil accumulated and its fatty acid composition 

depended on the glycerol concentration.  Under batch fermentation conditions, the yeast 

accumulated over 50% lipids on a yeast dry weight basis in 48 h when grown on 6.4% 

glycerol.  Fed-batch fermentations increased biomass production to 62.7±2.3% on dry weight 

basis and lipid accumulation up to 64.8±2.8 g/L.  The fatty acid profile of the yeast oil was 

palmitate (16:0, 28.6%), stearate (18:0, 11.1%), oleate (18:1, 45%) and linoleate (18:2, 

11.7%).  Results from this study supported the hypothesis that industrial biodiesel-based 

glycerol can be converted into yeast and single cell lipid.  This single cell oil could then be 

further transformed into biodiesel and potentially increase the yield of biodiesel per feedstock 

unit. 

Introduction 

Biodiesel is a relatively new and rapidly growing industry.  In the United States, biodiesel 

production capacity has grown more than 6-fold over the last 2 years.  Glycerol is a co-

product of the biodiesel industry and is produced when triacyglycerols react with methanol to 

produce fatty acid methyl esters (Johnson and Taconi, 2007).  Production of 9 kg of biodiesel 

results in approximately 1 kg of impure, low-quality glycerol.  Along with the recent increase 

in production of biodiesel, there has been a corresponding increase in the amounts of glycerol 

on the market causing the price of glycerol to drop precipitously.  Crude biodiesel glycerol 

contains a variety of impurities, chiefly water, free fatty acids and methanol, which make it 

unsuitable, without substantial and expensive clean up, for the traditional applications of 
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refined glycerol – mainly food and cosmetics.  An economically feasible use for crude 

glycerol is needed. 

Glycerol can be used as a carbon source in industrial fermentations.  Oleaginous yeasts can 

convert simple carbon compounds into triacylglycerols.  The yeast, Cryptococcus curvatus 

previously known as Apiotrichum curvatum and Candida curvata, was discovered at Iowa 

State University (Moon and Hammond, 1978).  C. curvatus grows well on cheese whey 

permeate to a high cell density, while using all the available whey nitrogen.  Then, the yeast 

begins to convert the lactose in the whey permeate into intracellular oil and typically ends 

with 57% oil on a dry weight basis.  The oil that is produced on lactose has a fatty acid 

composition similar to that of palm oil (Lee et al., 1992).  The yeast produced about 17 g/L 

of dry weight on permeate and leave about 5% of the chemical oxygen demand (COD) in the 

medium after 72 h (Moon and Hammond, 1978).  C. curvatus also is able to digest oil in its 

growth medium and deposit it directly as intracellular oil (Lee et al., 1992).    Additionally, 

when fed a variety of oil types, the yeast lipid mirrored the fed fatty acid profile (Lee et al., 

1992).   

Meesters and Huijberts (1996) reported that when C. curvatus was cultured using refined 

glycerol as the carbon source in a fed-batch fermentation system, cell density reached 118 

g/L and accumulated oil that contained 50% oleate, 16% linolenate and stearate, and 18% 

palmitate.  When this fermentation was switched to nitrogen deficiency, oil productivity 

reached 0.59 g/L*h.  This work was done using refined glycerol and not the material 

produced from biodiesel.  A concern is that the glycerol from biodiesel plants contains 

significant impurities that might limit C. curvatus’ growth.  The objective of this work was to 

explore the possibility of using C. curvatus to convert biodiesel grade glycerol (BDG) into 

single cell oil, which could be transformed into additional biodiesel. 
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Materials and Methods 

C. curvatus culturing conditions 

In all experiments the oleaginous yeast C. curvatus ATCC 20509 was used.  Freeze dried C. 

curvatus ATCC 20509 was activated by suspension in DifcoTM Yeast and Mold broth 

(Becton, Dickinson and Company, Sparks, MD, USA) and incubated at 30˚C for 24 h.  

Culture was plated on Potato Dextrose Agar DifcoTM (Becton, Dickinson and Company, 

Sparks, MD, USA).  Then a colony was transferred from the plate to a basal medium broth 

supplemented with carbon and nitrogen sources.  The basal medium was KH2PO4 2.5 g/L, 

MgSO4
.7H2O 1.0 g/L, CaCl2

.2H2O 0.2 g/L, FeCl3
.6H2O 20.0 mg/L, MnSO4

.H2O 2.0 mg/L, 

ZnSO4
.7H2O 1.0 mg/L, CuSO4

.5H2O 0.1 mg/L, NaCl 60 mg/L (Vega et al., 1988), and urea 

0.36 g/L or asparagine, 0.8 g/L.  Biodiesel grade glycerol (80%) was provided by the 

Renewable Energy Group, Inc. (Ames, IA, USA) and was obtained directly from the 

biodiesel manufacturing plant.  The autoclaved basal medium containing 64 g/L BDG was 

adjusted to pH 5.4 with 3N hydrochloric acid solution.  Thiamine hydrochloride (1.0 mg/L) 

was added by sterile filtration.  C. curvatus was grown in shake flasks at 30˚C for 24 h with 

agitation (200 rpm) and transferred three times into fresh medium. The third transfer was 

used as inoculum for the experiments. 

Growth and lipid accumulation experiments on BDG and various nitrogen sources 

Batch experiments were performed in 250-mL Erlenmeyer flasks containing 100 mL of basal 

medium at 30oC with shaking at 200 rpm for 72 h.  C. curvatus was grown on a basal 

synthetic medium supplemented with 1.0 mg/L thiamine hydrochloride, BDG and a nitrogen 

source.  Three BDG concentrations: 64, 120, or 200g/L; and the three nitrogen sources: 0.8 

g/L asparagine, 0.27 g/L ammonium chloride + 0.1 g/L yeast extract or 0.36 g/L urea were 

used.  Growth was monitored by direct microscopic counts using a haemocytometer.   

Growth at different urea, BDG and refined glycerol concentrations 

A Microbiology Reader Bioscreen C (Oy Growth Curves, AB Ltd., Helsinki, Finland) was 

used to evaluate carbon to nitrogen ratios using different nitrogen sources and concentrations 
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of glycerols.   Cells were harvested aseptically from a 24-h C. curvatus culture by 

centrifugation at 9000 x g at 4oC.  The cells were re-suspended and washed in 25 mL of 

sterile saline and diluted 1:25 with sterile basal medium without a carbon source. The 

Bioscreen plate wells were filled with sterile basal medium with a carbon source (BDG or 

refined glycerol [RG]), urea and C. curvatus inoculum.  The total sample size was 350 µL.  

Control wells contained basal medium without inoculum and sterile basal medium without 

carbon source plus C. curvatus inoculum.  A complete 5x5 factorial design was used for 

refined glycerol concentrations (1, 5, 10, 15 and 25%) with urea concentrations (0.1, 0.2, 0.4, 

0.6 and 0.8 g/L); a 12x6 complete factorial design for BDG concentrations (1, 2, 3, 4, 5, 6, 8, 

10, 12, 15, 20 and 25%) with urea concentrations (0.1, 0.2, 0.4, 0.6, 0.8 and 1.0 g/L ).  Plates 

were incubated in the Bioscreen at 30oC with continuous (low speed) shaking for 70 h.  

Absorbance was measured hourly at 580 nm.  Each sample was run in duplicate, and the 

experiment was also replicated. 

Fed-batch fermentation in Fernbach flasks 

Fed batch fermentations were performed in Fernbach flasks containing 1L of basal medium 

supplemented with 1.0 mg/L thiamine hydrochloride at 30oC with shaking at 200 rpm for 144 

h.  At 0, 24, 48 and 72 h of fermentation, 16 g BDG and 0.36 g urea were added, and 16 g of 

BDG were added at 96, 108, 120 and 132 h of fermentation.  Glycerol and urea utilizations 

were measured by glycerol and urea assay kits (Boehringer Mannheim/R-Biopharm AG, 

Darmstadt, Germany).  

Fed-batch fermentation in 5-L fermenters 

Two 5-L fermenters were used (model and make).  Various fed-batch trials were tested and 

are given in Table 2.  Each fermentation started with 4 L of basal medium with various 

amounts of BDG and 0.8 g/L urea.  The medium was sterilized in the fermenter jar, and 

afterwards 3 mg/L thiamine hydrochloride was added by sterile filtration.  A 2% inoculum of 

a 24-h yeast culture (80 ml/4L) was used.  Urea and BDG were added periodically according 

to Table 2.  Air flow, dissolved carbon dioxide, temperature, and agitation were monitored 

and recorded.  The pH was automatically adjusted to 5.4 by adding 0.5 M sodium hydroxide 
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or 3 N hydrochloric acid solutions.  Glycerol and urea utilizations were measured by glycerol 

and urea assay kits (Boehringer Mannheim/R-Biopharm AG, Darmstadt, Germany). 

Oil extraction and analysis    

Yeast cell were harvested by centrifugation at 9000 g for 30 min and washed twice with 

distilled water.  Dry weight of the washed cells was determined by drying a 10 g sample with 

100 mL absolute ethanol, evaporating the ethanol or by freeze drying the yeast phase 

overnight (Virtis Ultra-35, Gardiner, NY, USA) and weighing.  Lipids were extracted from 

the yeast phase by sequential ethanol, hexane and benzene extractions according to 

Hammond et al. (1981).   

Extracted lipids were methylated with sodium methoxide according to Hammond (1991)  and 

analyzed by gas chromatography with a HP 5890 Series II gas chromatograph (Hewlett-

Packard Company, Avondale, PA,USA) with a fused-silica capillary column SP-2423 (60 m 

x 0.25 mm i.d., 0.20 µm) (Supelco, Inc., Bellefontaine, PA).  The carrier gas (helium) flow 

rate was 1.9 mL/min and the split ratio was 24.8.  The column temperature was held at 140°C 

for 6 min, programmed to 220°C at 10°C /min and held at 220°C for 15 min.  The injector 

and detector temperatures were 230°C.  Quantitative analysis was done using methyl 

heptadecanoate as an internal standard.   

Statistical analysis 

For the bioscreen experiments a 5x5 and 12x6 complete factorial designs were used.  Data 

from the absorbance measurements was transformed to the logarithm of the cell count and 

was plotted against time.  Bioscreen experimental data were  analyzed by using an analysis of 

variance (ANOVA) by the SAS mixed models procedure and the repeated measures method. 

Data from other experiments were analyzed by analysis of variance (ANOVA) with the SAS 

9.1 (SAS Institute, Cary, NC) general linear model procedure. The difference was considered 

significant when P < 0.05. 
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Results  

C.curvatus growth on refined glycerol and biodiesel industry-derived crude glycerol 

C.curvatus growth rate was evaluated by fermentations in synthetic medium supplemented 

with either BDG or RG in various amounts (10, 20, 30, 40, 50, 60, 80, 100, 150, 200, and 

250 g/L).  Six urea concentrations (0.1, 0.2, 0.4, 0.6, 0.8 and 1.0 g/L) were with BDG and 

five urea concentrations (0.1, 0.2, 0.4, 0.6, and 0.8g/L) were used in the fermentations.  

Figures 1-3 show the resulting C. curvatus growth curves.  C. curvatus was able to use 

glycerol from BDG as a source of carbon.  There was no significant difference between C. 

curvatus growth on BDG and RG with 10 g/L glycerol (Figure 1), but there was a significant 

difference in growth on BDG and RG at 50, 100, 150 and 250 g/L glycerol in the medium.  

C. curvatus grew better on media with RG at 50 and 100 g/L glycerol concentration; 

however, BDG was the better substrate at 150 and 250 g/L of glycerol (Figure 1).  The 

concentration of glycerol also had a significant effect on the C. curvatus growth rate.  Figure 

1 shows the growth curves of C. curvatus cultivated on BDG or RG at various glycerol 

concentrations. Figure 2 shows that as glycerol concentration increases, the decrease in 

growth rate accelerates and growth repressed at glycerol concentrations greater than 150 g/L.  

 The effect of urea concentration on C. curvatus growth was evaluated for each glycerol type 

and concentration.  There was no significant effect of urea concentration on C. curvatus 

growth over a wide range of carbon/nitrogen ratios (C/N) (from 8.8 to 2097.1).  Interaction 

between urea concentration and glycerol concentration, represented by C:N ratio in the 

statistical model, did not significantly effect yeast growth.  Selected results are shown for 

various BDG and urea concentrations in Figures 3-5.   

C. curvatus growth and lipid accumulation on media with various nitrogen sources 

The purpose of shake flask studies was to compare nitrogen sources at various BDG 

concentrations.  Lipid production and cell counts were measured to determine the success of 

the fermentations.  C. curvatus was grown at three concentrations of BDG: 64, 120 and 200 

g/L and with 0.8 g/L asparagine or 0.27 g/L ammonium chloride plus 0.1 g/L yeast extract.  
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After 24 h the cell masses were constant.  In agreement with the Bioscreen experiment, there 

was negative correlation between C. curvatus growth and BDG concentration (Figure 6).  

The best yeast growth rate was at 64 g/L BDG for both nitrogen sources.  There was not a 

significant difference between 0.8 g/L asparagine and 0.27 g/L ammonium chloride plus 0.1 

g/L yeast extract at 120 and 200 g/L BDG.  However, C. curvatus grew faster on medium 

with asparagine than on medium with ammonium chloride and yeast extract at 64 g/L BDG 

(Figure 6).  C. curvatus grew equally well on urea or asparagine at 64 g/L BDG (Table 3).  

The BDG concentration significantly affected not only biomass but lipid accumulation.  

Lipid accumulation was greatest at 64 g/L BDG.   concentration supported the best lipid 

accumulation.  Yeast cells grown on the 120 and 200 g/L BDG had significantly lower fat 

content.  The saturated fatty acids/unsaturated fatty acids ratio was inversely related to the 

medium BDG concentration (Table 3).  The relative amount of palmitic, steric and oleic 

acids decreased as the BDG concentration of the medium increased.  Conversely, the relative 

amounts of linoleic and linolenic acids were positively correlated with the BDG 

concentration of medium (Table 3). 

Fed-batch fermentations in shake flask 

Four fed-batch fermentations were performed in Fernbach flasks in an effort to increase the 

yield of dry yeast.  During the growth phase, BDG and urea were added to the flasks, using 

urea and glycerol concentration as signals for addition of these substances.  The lipid 

accumulation phase started at 96 h of fermentation when the urea concentration of the 

medium was zero.  No additional nitrogen was added, but BDG for de novo lipid synthesis 

was added, resulting in significant lipid accumulation.  The dry yeast yield was 64.8±2.8 g/L 

and the lipid content of the dry yeast was 62.7±2.3%.  The fatty acid profile of the yeast oil 

was 28.6% palmitate, 11.1% stearate, 45% oleate and 11.7% linoleate (Table 4).     

Fed-batch fermentations in 5L- fermenters 

The cultivation of C. curvatus by fed-batch in shake flasks significantly increased biomass 

production compared with batch fermentations, so four fed-batch fermentation trials were 

performed in the 5L fermenters to optimize conditions and reach high cell densities and lipid 
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accumulations.  Fermentations were performed in two stages: In the first 48 h, cells were 

grown to a high density.  In the second stage, BDG and urea were added according to Table 

2.  The feeding of BDG and urea was signaled by measurements of the dissolved oxygen, 

urea and glycerol concentrations.  When amounts of glycerol and urea in the medium were 

sufficient, dissolved oxygen decreased rapidly and remained low because of cell respiration 

during biomass production.  When dissolved oxygen began to decrease, one or both of the 

nutrients glycerol and/or urea had dropped to concentrations that limited yeast growth, 

signaling that feeding should occur.   During the lipid accumulation stage 30 g/L BDG was 

added at 51 and 72 h in each of the fermentation trials given in Table 2.  Total fed-batch 

fermentation time was 96 h.  The biomass production and yeast cell lipid accumulation 

results for the four fed-batch fermentations are shown in Figures 7 and 8.  The best biomass 

production of 61.7±2.1 was achieved during fermentation #3 in which 100 g/L glycerol were 

used.  The lipid accumulation was above 50% on dry weight basis, which was not 

significantly different from fermentations #1 and #2.  Yeast from fermentation #4, however, 

had significantly lower fat content 31.0±4.0.  After 48 h of fermentation, the cell density 

remained constant because nitrogen was limited.  Fermentation #4 had the highest yeast cell 

dry weight at 48 h fermentation, but the lipid accumulation phase was significantly slower 

between 48 and 72 h compared with the other fermentations.  In fermentation #4, yeast cells 

did not accumulate any fat during last 24 h of fermentation despite the presence of available 

glycerol in the medium, which resulted in a low fat content and yeast cell dry weight.   

Discussion 

Meesters et al. (1996) described the growth and lipid accumulation of C. curvatus on a 

refined glycerol substrate.  In the present study we found that C.curvatus was able to use 

BDG as effectively as refined glycerol if the glycerol concentration was between 10 and 50 

g/L.  There is no difference in C. curvatus’ growth on RG or BDG at 10 g/L glycerol 

concentration, but C. curvatus grows significantly better on RG than on BDG at 50 and 100 

g/L glycerol concentrations.  The difference in growth rate for the two types of glycerol 

increases with their concentration.  The BDG has some significant impurities, such as salts, 

free fatty acids, methanol that could limit C. curvatus’ growth.  At 10 g/L glycerol their 
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concentrations of these impurities was probably too low to inhibit growth, but as BDG levels 

increased so did the putative inhibitors.    At 150 and 250 g/L glycerol concentrations their 

osmotic value probably became the limiting factor for C. curvatus growth.  Biomass 

production was inhibited almost completely at these high glycerol concentrations.  Meesters 

et al. (1996) also reported significant growth repression when C. curvatus was grown on 128 

and 256 g/L glycerol.    

Over a wide range of C:N ratios and urea concentrations C. curvatus’ growth rate depended 

on, and was negatively correlated to, the BDG concentration.  Variation of the urea 

concentrations from 0.1 to 1.0 g/L did not affect C. curvatus’ growth rate.   

Several nitrogen sources, asparagine, urea, yeast extract and ammonium chloride, were 

compared.  Biomass and fat content were higher when asparagine or urea was used as the 

sole nitrogen source. The composition of yeast oil was correlated with the fat content.  The 

higher the fat content the greater the saturation of the oil.  When C. curvatus was grown in 

ways that produce very little fat, a greater proportion of its lipid was in cell membranes, 

which typically are rich in unsaturated fatty acids compared with the triacylglycerols found 

in its fat globules.  This probably explains the increase in saturation with oil percentage in the 

yeast.  Meesters et al. (1996) characterized the fatty acid composition of yeast oil at various 

fermentation times; in agreement with our results, they reported that the amount of linoleate 

decreased while oleate and stearate increased with fermentation time.  An earlier study also 

reported higher degree of unsaturation of yeast oil during growth phase followed by dramatic 

increase of oleic acid content during lipid accumulation phase (Moon and Hammond, 1978). 

High glycerol concentrations inhibited de novo synthesis and accumulation of storage lipids.  

When cultivated in batch fermentations, C. curvatus was able to grow well and accumulate 

up to 60% lipids on media with 64g/L BDG and with urea as the sole nitrogen source.  

However, yeast dry weight yield was only 13-17 g/L, but as reported by Meesters et al. 

(1996), fed-batch fermentation provided a way to increase biomass production. 

Previously, single cell oil production was reported to be marginally economical because of 

taxes, substrate and production costs (Moon and Hammond, 1978; Ratledge, 1988).  Very 



www.manaraa.com

 95 

low substrate costs were insufficient to make the process profitable.  In this study we not 

only used the low-valued substrate BLG but also showed that C. curvatus could grow on 

urea, an inexpensive substrate, which might lead to lower production  costs.  In addition, 

using a fed-batch fermentation system significantly increased the yield of oil/liter and greatly 

improved the efficiency of single oil production.  Fermentation time and aeration rate 

optimization may also improve the economic parameters of the process.  In addition, 

competing vegetable oils are commanding much higher prices now than when previous 

calculations were made.  Industrial biodiesel-based glycerol can be converted into single cell 

lipid and into biodiesel economically.  Yeast triacylglycerol production from industrial grade 

glycerol potentially can increase the yield of biodiesel per feedstock unit in biodiesel plants 

and decrease production costs.  Further work to optimize fed-batch fermentation conditions 

may further increase production efficiency. 
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Table 1. Carbon:Nitrogen ratios used in bioscreen experiments. 

Urea concentration (g/L) Glycerol 
concentration (g/L) 0.1 0.2 0.4 0.6 0.8 1 

10 84.3 42.4 21.4 14.4 10.9 8.8 

20 168.2 84.3 42.4 28.4 21.4 17.2 

30 252.0 126.2 63.3 42.4 31.9 25.6 

40 335.9 168.2 84.3 56.3 42.4 34.0 

50 419.8 210.1 105.3 70.3 52.8 42.4 

60 503.6 252.0 126.2 84.3 63.3 50.7 

80 671.4 335.9 168.2 112.3 84.3 67.5 

100 839.1 419.8 210.1 140.2 105.3 84.3 

120 1006.8 503.6 252.0 168.2 126.2 101.1 

150 1258.4 629.4 314.9 210.1 157.7 126.2 

200 1677.8 839.1 419.8 280.0 210.1 168.2 

250 2097.1 1048.8 524.6 349.9 262.5 210.1 

 
 
 
 
 
 
 
 

Table 2. The amounts of BDG (g/L) added to the 5-L fermenters at various times. Urea (0.8 g/L) was 
added at 0, 30 and 42 h for each fermentations.   
 

Fermentation time (h) 
Fermentation type  

0 30 42 51 72 

1 16 16 16 30 30 

2 18 18 18 30 30 

3 20 20 20 30 30 

4 22 22 22 30 30 
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Table 3. Average percentage lipid/yeast dry weight and fatty acid composition of C. curvatus grown 
on media with various BDG concentrations (64, 120, 200 g/L) and different nitrogen sources (0.8 g/L 
asparagine,0.27 g/L ammonium chloride + 0.1 g/L yeast extract (Yeast Extract) or 0.36 g/L urea. 
 

Nitrogen source: Yeast Extract Asparagine Urea 

BDG concentration, g/L: 64 120 200 64 120 200 64 

14:0 - - - 0.6 - - - 

16:0 24.8 14.4 9.1 27.8 22.14 7.2 21.8 

16:1 - - - 1.2 - - 0.8 

18:0 11.3 14.2 9.7 8.8 - 3.4 12.1 

18:1 42.4 31.8 25.3 50.4 42.7 29.8 43.0 

18:2 18.6 31.5 48.4 9.3 35.1 50.6 19.2 

18:3 2.9 7.9 7.4 1.3 - 8.8 2.8 

Lipid content (%) 29.9 23.2 15.2 54.6 24.4 13.1 47.1 

%Unsaturated 63.9 71.3 81.1 61.0 77.9 89.3 65.0 

%Saturated 36.1 28.7 18.8 37.1 22.1 10.5 34.0 

Saturated/unsaturated 0.6 0.4 0.2 0.6 0.3 0.1 0.5 

 
 
 
 
 
 
 
 
Table 4. Average percentage of fatty acid composition in oil extracted from C.curvatus grown in 
shake flasks on BDG in a fed-batch fermentations mean±stdev (n=4). 
 

Fatty acid Weigh % 

14:0 0.50  ± 0.1 

16:0 28.6  ± 0.7 

16:1 1.50  ± 0.1 

18:0 11.1  ± 1.4 

18:1 45.0  ± 1.3 

18:2 11.7  ± 2.1 

18:3 1.20  ± 0.2 

 

 
 
 
 



www.manaraa.com

 98 

Time (hr)

24 28 32 36 40 44 48

C
e

ll 
c
o

u
n

t 
(l

o
g

)

4

5

6

7

8

9

10
10 g/L RG

10 g/L BDG

50 g/L RG

50 g/L BDG

100 g/L RG

100 g/L BDG

150 g/L RG

150 g/L BDG

250 g/L RG

250 g/L BDG

 
 
Figure 1. Log cell count versus time of C. curvatus grown on media with various concentrations of 
either RG or BDG with urea as the nitrogen source.  Each point is the average over all urea 
concentrations. Batch fermentation. 

 



www.manaraa.com

 99 

Glycerol concentration (g/L)

0 50 100 150 200 250

G
ro

w
th

 r
a

te
 (

s
lo

p
e

)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

RG

BDG

 

 
Figure 2. Growth curve slopes of C. curvatus grown at different concentrations of pure glycerol (RG) 
or  biodiesel industry-derived crude glycerol (BDG). Batch fermentation. 
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Figure 3 Urea concentration effect on C. curvatus growth at 20 g/L glycerol concentration in 
medium. C. curvatus was fermented with different concentrations of urea (0.1, 0.2, 0.4, 0.6, 0.8 and 
1.0 g/L) with biodiesel industry-derived crude glycerol (BDG). Each line is average of four lines that 
corresponds to replicated independent experiments. Batch fermentation. 
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Figure 4. Urea concentration effect on C. curvatus growth at 30 g/L glycerol concentration in 
medium. C. curvatus was fermented with different concentrations of urea (0.1, 0.2, 0.4, 0.6, 0.8 and 
1.0 g/L) with biodiesel industry-derived crude glycerol (BDG). Each line is average of four lines that 
corresponds to replicated independent experiments. Batch fermentation. 
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Figure 5. Urea concentration effect on C. curvatus growth at 40 g/L glycerol concentration in 
medium. C. curvatus was fermented with different concentrations of urea (0.1, 0.2, 0.4, 0.6, 0.8 and 
1.0 g/L) with biodiesel industry-derived crude glycerol (BDG). Each line is average of four lines that 
corresponds to replicated independent experiments. Batch fermentation. 
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Figure 6. C. curvatus growth on medium with different BDG concentrations (64 g/L, 120 g/L, 200 
g/L) with 0.8 g/L asparagine (Asp) or 0.27 g/L ammonium chloride with 0.1 g/L yeast extract (YAC). 
Cell count(log) was plotted over time (hr). Each line is average of replicated independent experiments 
(n=2). Batch fermentation. 
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Figure 7. Biomass production.  Fed-batch fermentations in 5-L fermenters.  Four fermentation 
trials(table 2):   See Table 2 for conditions of fed batching; 
BDG was added at 0, 30, 42, 51 and 72 h.  Urea (0.8 g/L) was added at 0, 30 and 42 h of fermentation 
for each trial.   
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Figure 8. Lipid accumulation.  Fed-batch fermentations in 5-L fermenters.  Four fermentation trials 
(table 2): BDG was added at 0, 30, 42, 51 and 72 h.  Urea (0.8 g/L) was added at 0, 30 and 42 h of 
fermentation for each trial. 
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Chapter 8: General Conclusions 

Oleaginous yeast cells have the ability to synthesize oil from carbon sources or to adsorb 

fatty acids from their growth medium when grown on restricted medium.  Fish oil, linseed or 

conjugated linoleic acid (CLA)-rich oils were encapsulated in Cryptococcus curvatus.  

C. curvatus encapsulation improved oxidative stability of long-chain polyunsaturated fatty 

acids and CLA.  In vitro results suggested that encapsulation in yeast was an effective 

method to protect polyunsaturated fatty acids from rumen hydrogenation.  Yeast cell viability 

was not critical for the oxidative and rumen stability of the encapsulated fish oil.  A 100-L 

fed-batch fermentation procedure was developed for fish oil encapsulation. About 340L 

(10.1% DM) concentrated liquid yeast product with encapsulated fish oil was produced by 

six 100L fed-batch fermentations.  Biomass production was 54.9 g/L and fat content 59.2% 

on cell dry weight basis.  All DHA and EPA have been stored in intracellular lipid droplets 

because they have not been found in phospholipid fraction.  Phosphatidylcholine was major 

Cryptococcus curvatus phospholipid.   

Three lactating cows were fed with wet dead yeast containing encapsulated fish oil. Dietary 

treatment did not have significant effect on milk fat composition.  No increased feed refusal 

or milk fat production was detected; however, no omega-3 fatty acids from fish oil were 

detected in milk fat after 20 days on the treatment diet.  

The oleaginous yeast Cryptococcus curvatus was able to grow as well as synthesize and 

accumulate triacylglycerols in lipid bodies when cultivated on industrial-grade glycerol that 

was a byproduct of biodiesel production.  Fed-batch fermentations suggested for maximal 

biomass production up to 64.8±2.8 g/L and lipid accumulation up to 62.7±2.3% on dry 

weight basis.  Thus, industrial biodiesel-based glycerol can be converted by yeast into single 

cell lipid, which could be further transformed into biodiesel and potentially increase the yield 

of biodiesel per feedstock unit.  
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